[NOIp2009] luogu P1072 Hankson 的趣味题
把 c 改成 d 下了两个点。
题目描述
已知正整数 a0,a1,b0,b1a_0,a_1,b_0,b_1a0,a1,b0,b1,设某未知正整数 xxx 满足:
- xxx 和 a0a_0a0 的最大公约数是 a1a_1a1;
- xxx 和 b0b_0b0 的最小公倍数是 b1b_1b1。
求满足条件的 xxx 的个数。
Solution 1
考虑一个式子。∀a,b∈N∗\forall a,b\in\N^*∀a,b∈N∗ 有a×b=gcd(a,b)×lcm(a,b)a\times b=\gcd(a,b)\times\text{lcm}(a,b)a×b=gcd(a,b)×lcm(a,b)
枚举 gcd(x,b0)\gcd(x,b_0)gcd(x,b0),算出 xxx,判断 xxx 是否满足 1. 条件。统计答案,输出。时间复杂度 O(Tb1⋅lgb1)O(T\sqrt{b_1}·\lg b_1)O(Tb1⋅lgb1)。
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#define int long long
int T;
int a,b,c,d;
int check(int Gcd){
int x=d/c*Gcd;
if(std::__gcd(c,x)!=Gcd) return 0;
if(std::__gcd(x,a)!=b) return 0;
return 1;
}
int work(){
int sum=0;
for(int i=1;i*i<=d;++i){
if(d%i) continue;
sum+=check(i);
if(i*i!=d) sum+=check(d/i);
}
return sum;
}
signed main(){
scanf("%lld",&T);
while(T--){
scanf("%lld%lld%lld%lld",&a,&b,&c,&d);
printf("%lld\n",work());
}
}
Solution 2 By @zzlzk
容易想到,∀a,b,k∈N∗\forall a,b,k\in\N^*∀a,b,k∈N∗ 有gcd(a,b)=k⇔gcd(ak,bk)=1\gcd(a,b)=k\quad\Leftrightarrow\quad\gcd(\frac ak,\frac bk)=1gcd(a,b)=k⇔gcd(ka,kb)=1
化一下式子,得到
{gcd(xa1,a0a1)=1,gcd(b1b0,b1x)=1.\begin{cases}\gcd(\frac x{a_1},\frac{a_0}{a_1})=1,\\ \gcd(\frac{b_1}{b_0},\frac{b_1}x)=1.\end{cases}{gcd(a1x,a1a0)=1,gcd(b0b1,xb1)=1.
枚举 b1b_1b1 的因子,判断是不是 a1a_1a1 的倍数即可。时间复杂度 O(Tb1⋅lgb1)O(T\sqrt{b_1}·\lg b_1)O(Tb1⋅lgb1)。
#include<cstdio>
using namespace std;
int gcd(int a,int b) {
return b==0?a:gcd(b,a%b);
}
int main() {
int T;
scanf("%d",&T);
while(T--) {
int a0,a1,b0,b1;
scanf("%d%d%d%d",&a0,&a1,&b0,&b1);
int p=a0/a1,q=b1/b0,ans=0;
for(int x=1;x*x<=b1;x++)
if(b1%x==0){
if(x%a1==0&&gcd(x/a1,p)==1&&gcd(q,b1/x)==1) ans++;
int y=b1/x;//得到另一个因子
if(x==y) continue;
if(y%a1==0&&gcd(y/a1,p)==1&&gcd(q,b1/y)==1) ans++;
}
printf("%d\n",ans);
}
return 0;
}
[NOIp2009] luogu P1072 Hankson 的趣味题的更多相关文章
- luogu P1072 Hankson的趣味题
题目链接 luogu P1072 Hankson 的趣味题 题解 啊,还是noip的题好做 额,直接推式子就好了 \(gcd(x,a_0)=a_1=gcd(\frac{x}{a_1},\frac{a_ ...
- luogu P1072 $Hankson$ 的趣味题
这里提供两种做法 sol 1 考虑两个数\(A,B\)和\(C=gcd(A,B),D=lcm(A,B)\)的关系 设\(S=\{2,3,5...P_n\}\)为质数集合\(p_{x,i}\)表示\(x ...
- 洛谷 P1072 Hankson 的趣味题 解题报告
P1072 \(Hankson\)的趣味题 题目大意:已知有\(n\)组\(a0,a1,b0,b1\),求满足\((x,a0)=a1\),\([x,b0]=b1\)的\(x\)的个数. 数据范围:\( ...
- 洛谷P1072 Hankson 的趣味题
P1072 Hankson 的趣味题 题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现在,刚刚放学回家的 Hankson 正在思考一 ...
- Java实现洛谷 P1072 Hankson 的趣味题
P1072 Hankson 的趣味题 输入输出样例 输入 2 41 1 96 288 95 1 37 1776 输出 6 2 PS: 通过辗转相除法的推导 import java.util.*; cl ...
- [NOIP2009] 提高组 洛谷P1072 Hankson 的趣味题
题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现 在,刚刚放学回家的 Hankson 正在思考一个有趣的问题. 今天在课堂上,老师讲 ...
- 【Luogu】P1072 Hankson 的趣味题 题解
原题链接 嗯...通过标签我们易得知,这是一道数学题(废话) 其中,题目给了这两个条件: \(gcd(x,a_0)=a_1,lcm(x,b_0)=b_1\) 所以,根据 \(gcd\) 与 \(lcm ...
- 洛谷P1072 Hankson 的趣味题(题解)
https://www.luogu.org/problemnew/show/P1072(题目传送) 数学的推理在编程的体现越来越明显了.(本人嘀咕) 首先,我们知道这两个等式: (a0,x)=a1,[ ...
- 【题解】洛谷P1072 Hankson的趣味题 (gcd和lcm的应用)
洛谷P1072:https://www.luogu.org/problemnew/show/P1072 思路 gcd(x,a0)=a1 lcm(x,b0)=b1→b0*x=b1*gcd(x,b0) ( ...
随机推荐
- NOIP2008复赛 提高组 第一题
描述 笨小猴的词汇量很小,所以每次做英语选择题的时候都很头疼.但是他找到了一种方法,经试验证明,用这种方法去选择选项的时候选对的几率非常大! 这种方法的具体描述如下:假设maxn是单词中出现次数最多的 ...
- 关于纯xmlhttprequest请求服务器数据
今天我们的web技术已经相当的完善, 各种前端框架如jquery或者再深一点的工具APIcloud 的使用极大的方便了我们的开发工作. 今天我要分享一个纯javascript的方式来解决请求服务器数据 ...
- Spring 7大模块的解说
先看以下Spring的组成图: 7大模块包括:core.AOP.ORM.DAO.WEB.Context.WebMvc. 1:core:spring的容器,主要组成是BeanFactury.也是Spri ...
- Linux ln 软、硬链接
最近在学习Linux系统的,给我的感觉就是“智慧的结晶,智慧的大脑,智慧的操作” 今天研究到了一个有趣的命令 ln 我们先来看一下它的概念吧 Linux ln命令是一个非常重要命令,它的功能是为 ...
- AD 域服务简介(二)- Java 获取 AD 域用户
博客地址:http://www.moonxy.com 关于AD 域服务器搭建及其使用,请参阅:AD 域服务简介(一) - 基于 LDAP 的 AD 域服务器搭建及其使用 一.前言 先简单简单回顾上一篇 ...
- 02 jvm简介
声明:本博客仅仅是一个初学者的学习记录.心得总结,其中肯定有许多错误,不具有参考价值,欢迎大佬指正,谢谢!想和我交流.一起学习.一起进步的朋友可以加我微信Liu__66666666 这是简单学习一遍之 ...
- 运行pytest,报错"AttributeError: 'module' object has no attribute 'xxx'"
最近学习pytest被此问题困扰,敲脑壳,实在是不该.百度解决方法一大堆,我的问题怎么也解决不了,来看一下,我是怎么解决的,各位大佬勿喷,只是自己做笔记用,谢谢. 报错信息如下: 网上解决方法是这样的 ...
- Docker学习之docker常用命令
docker ps -a 表示所有容器 docker pull 获取image docker build 创建image docker run 运行container docker images 列出 ...
- html中的空格
网上摘录: HTML提供了6种空格实体.除第一种外,其他几种空格在不同浏览器中宽度各异. 它叫不换行空格,全称No-Break Space,它是最常见和我们使用最多的空格, ...
- 构建之法——homework4
手机应用——软件腾讯QQ: QQ是腾讯公司开发的一款基于Internet的即时通信软件.最初通过在线广告进行盈利(Banner广告.Email广告等).然后通过免费注册QQ,获取大量用户.开发QQ相关 ...