yolov3的论文写的比较简略,不看yolov1,yolov2很难直接看懂. 建议先看v1,v2论文.

yolov3主要做了几点改进

  • 改进了特征提取部分的网络结构
  • 多尺度预测
  • 分类由softmax改为logistic
    前面2个改进使得yolo对小目标的检测效果更好.

特征提取网络

由darknet19变为darknet53.

借鉴了resnet.

这个特征网络结构的变更是yolov3检测效果更好的一个重要原因.

多尺度预测

其实yolov2中就有了类似的想法,把不同layer的feature map连接起来成为新的feature map.也就是所谓的passthrough.但是yolov2中的这种做法得到的还是一个feature map.

yolov3中引入了多尺度的概念,生成好几种不同尺度的feature map.不同的feature map负责预测不同大小的目标.

coco数据集聚类出来9个先验框:(10×13),(16×30),(33×23),(30×61),(62×45),(59×119),(116 × 90),(156 × 198),(373 × 326).
以416 x 416为例,yolov3最终生成13 x 13,26 x 26,52 x 52三种feature map.分别负责不同大小的目标预测. 越小分辨率的feature map负责越大的目标.


多尺度的引入使得能够预测的box多了很多.

分类由softmax改为logistic

解决了一个目标属于多个类别的问题.将softmax改为多个独立的logistic分类器,这样就可以预测出多个label.

instead we simply use independent logistic classifiers. During training we use binary cross-entropy loss for the class
predictions.

参考:https://pjreddie.com/media/files/papers/YOLOv3.pdf , https://www.jianshu.com/p/d13ae1055302

yolo进化史之yolov3的更多相关文章

  1. 目标检测YOLO进化史之yolov1

    yolov3在目标检测领域可以算得上是state-of-art级别的了,在实时性和准确性上都有很好的保证.yolo也不是一开始就达到了这么好的效果,本身也是经历了不断地演进的. yolov1 测试图片 ...

  2. yolo进化史之yolov2

    yolov1和当时最好的目标检测系统相比,有很多缺点.比如和Fast R-CNN相比,定位错误更多.和基于区域选择的目标检测方法相比,recall也比较低.yolov2的目标即在保证分类准确度的情况下 ...

  3. AI佳作解读系列(二)——目标检测AI算法集杂谈:R-CNN,faster R-CNN,yolo,SSD,yoloV2,yoloV3

    1 引言 深度学习目前已经应用到了各个领域,应用场景大体分为三类:物体识别,目标检测,自然语言处理.本文着重与分析目标检测领域的深度学习方法,对其中的经典模型框架进行深入分析. 目标检测可以理解为是物 ...

  4. 检测算法简介及其原理——fast R-CNN,faster R-CNN,YOLO,SSD,YOLOv2,YOLOv3

    1 引言 深度学习目前已经应用到了各个领域,应用场景大体分为三类:物体识别,目标检测,自然语言处理.本文着重与分析目标检测领域的深度学习方法,对其中的经典模型框架进行深入分析. 目标检测可以理解为是物 ...

  5. 小白也能弄懂的目标检测之YOLO系列 - 第一期

    大家好,上期分享了电脑端几个免费无广告且实用的录屏软件,这期想给大家来讲解YOLO这个算法,从零基础学起,并最终学会YOLOV3的Pytorch实现,并学会自己制作数据集进行模型训练,然后用自己训练好 ...

  6. 目标检测网络之 YOLOv3

    本文逐步介绍YOLO v1~v3的设计历程. YOLOv1基本思想 YOLO将输入图像分成SxS个格子,若某个物体 Ground truth 的中心位置的坐标落入到某个格子,那么这个格子就负责检测出这 ...

  7. 一文带你学会使用YOLO及Opencv完成图像及视频流目标检测(上)|附源码

    计算机视觉领域中,目标检测一直是工业应用上比较热门且成熟的应用领域,比如人脸识别.行人检测等,国内的旷视科技.商汤科技等公司在该领域占据行业领先地位.相对于图像分类任务而言,目标检测会更加复杂一些,不 ...

  8. 【转】目标检测之YOLO系列详解

    本文逐步介绍YOLO v1~v3的设计历程. YOLOv1基本思想 YOLO将输入图像分成SxS个格子,若某个物体 Ground truth 的中心位置的坐标落入到某个格子,那么这个格子就负责检测出这 ...

  9. YOLOv3和YOLOv4长篇核心综述(上)

    YOLOv3和YOLOv4长篇核心综述(上) 对目标检测算法会经常使用和关注,比如Yolov3.Yolov4算法. 实际项目进行目标检测任务,比如人脸识别.多目标追踪.REID.客流统计等项目.因此目 ...

随机推荐

  1. SBT安装及命令行打包spark程序

    1.从https://www.scala-sbt.org/download.html官网上寻找所需要的安装包 可以直接本地下载完扔进去也可以wget路径,在这里我用的是sbt1.2.8版本的,下载到/ ...

  2. ReactJS:最大更新深度超出错误

    Maximum update depth exceeded. This can happen when a component repeatedly calls setState inside com ...

  3. MVC + EFCore 完整教程19-- 最简方法读取json配置:自定义configuration读取配置文件

    问题引出 ASP.NET Core 默认将 Web.config移除了,将配置文件统一放在了 xxx.json 格式的文件中. 有Web.config时,我们需要读到配置文件时,一般是这样的: var ...

  4. 11.源码分析---SOFARPC数据透传是实现的?

    先把栗子放上,让大家方便测试用: Service端 public static void main(String[] args) { ServerConfig serverConfig = new S ...

  5. vscode保存代码,自动按照eslint规范格式化代码设置

    # vscode保存代码,自动按照eslint规范格式化代码设置 编辑器代码风格一致,是前端代码规范的一部分.同一个项目,或者同一个小组,保持代码风格一致很必要.就拿vue项目来说,之前做的几个项目, ...

  6. Delegate,Block,Notification, KVC,KVO,Target-Action

    Target-Action: 目标-动作机制,所有的UIControl及子类都是这个机制:原理:在对象产生某个事件的特定时刻,给一个对象发送一个消息:类内部target去执行action方法 Dele ...

  7. Redis的常用命令与Java整合及高级应用篇

    一,redis是什么? ​ 首先数据库分为关系型数据库和非关系型数据库,关系型数据库是采用关系模型来组织数据的数据库,简单来说就是二维表格模型,同时保证事务的一致性. ​ 相反非关系型数据库采用key ...

  8. app发布当天,用户无法登录

    原因:当用户登录时候有商城用户的触发器存在,它会让商城用户也更新成登录状态. 由于用户量大,导致数据库锁死. 最后解决案:删掉触发器,在app的接口登录程序里,追加商城用户更新成登录的操作. 他案1: ...

  9. (四十七)c#Winform自定义控件-树表格(treeGrid)

    前提 入行已经7,8年了,一直想做一套漂亮点的自定义控件,于是就有了本系列文章. GitHub:https://github.com/kwwwvagaa/NetWinformControl 码云:ht ...

  10. c++采集windows操作系统名称

    WINAPI windows通过c++获取操作系统主要分两种: 1. windows是8.1版本以下版本:获取操作系统可以通过windows提供的api中GetVersionEx函数来获取 2. wi ...