poj 2649 Factovisors 对n!进行因数分解
| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 4431 | Accepted: 1086 |
Description
0! = 1
n! = n * (n-1)! (n > 0)
We say that a divides b if there exists an integer k such that
k*a = b
Input
Output
Sample Input
6 9
6 27
20 10000
20 100000
1000 1009
Sample Output
9 divides 6!
27 does not divide 6!
10000 divides 20!
100000 does not divide 20!
1009 does not divide 1000!
Source
#include <iostream>
#include <vector>
#include <cstring>
#include <cstdio>
using namespace std;
const int MAXN=;
bool vis[MAXN+];
int prime[MAXN+];
int n,m,p;
vector<pair<int,int> > exp; void init()//素数筛选
{
memset(vis,,sizeof(vis));
p=;
for(int i=; i<=MAXN; ++i)
{
if(vis[i]==false)
prime[p++]=i;
for(int j=; j<p&&i*prime[j]<=MAXN; ++j)
vis[i*prime[j]]=true;
}
} bool check(int x,int y)//判断当前的素数,n是否有这么多个
{
int tmp=n,sum=;
while(tmp)
{
sum+=tmp/x;
tmp/=x;
}
return y<=sum;
} bool judge()
{
for(int i=; i<exp.size(); ++i)
if(!check(exp[i].first,exp[i].second))
return false;
return true;
} int main()
{
init();
while(scanf("%d%d",&n,&m)==)
{
if(m==)
{
printf("%d does not divide %d!\n",m,n);
continue;
}
exp.clear();
int t=m;
for(int i=; i<p&&prime[i]<=m; ++i)
if(m%prime[i]==)
{
int cnt=;
while(m%prime[i]==)
{
m/=prime[i];
++cnt;
}
exp.push_back(make_pair(prime[i],cnt));//m的素数个数与m的素数因子对应
}
if(m!=)
exp.push_back(make_pair(m,));
if(judge())
printf("%d divides %d!\n",t,n);
else
printf("%d does not divide %d!\n",t,n);
}
return ;
}
poj 2649 Factovisors 对n!进行因数分解的更多相关文章
- 从“n!末尾有多少个0”谈起
在学习循环控制结构的时候,我们经常会看到这样一道例题或习题.问n!末尾有多少个0?POJ 1401就是这样的一道题. [例1]Factorial (POJ 1401). Description The ...
- 数学#素数判定Miller_Rabin+大数因数分解Pollard_rho算法 POJ 1811&2429
素数判定Miller_Rabin算法详解: http://blog.csdn.net/maxichu/article/details/45458569 大数因数分解Pollard_rho算法详解: h ...
- POJ 1811 Prime Test (Rabin-Miller强伪素数测试 和Pollard-rho 因数分解)
题目链接 Description Given a big integer number, you are required to find out whether it's a prime numbe ...
- 【poj 2429】GCD & LCM Inverse (Miller-Rabin素数测试和Pollard_Rho_因数分解)
本题涉及的算法个人无法完全理解,在此提供两个比较好的参考. 原理 (后来又看了一下,其实这篇文章问题还是有的……有时间再搜集一下资料) 代码实现 #include <algorithm> ...
- poj 1811 Prime Test 大数素数测试+大数因子分解
Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 27129 Accepted: 6713 Case ...
- poj 2480 Longge's problem [ 欧拉函数 ]
传送门 Longge's problem Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7327 Accepted: 2 ...
- POJ 3370. Halloween treats 抽屉原理 / 鸽巢原理
Halloween treats Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 7644 Accepted: 2798 ...
- POJ 2356. Find a multiple 抽屉原理 / 鸽巢原理
Find a multiple Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7192 Accepted: 3138 ...
- POJ 2965. The Pilots Brothers' refrigerator 枚举or爆搜or分治
The Pilots Brothers' refrigerator Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 22286 ...
随机推荐
- window下不用安装虚拟机,也可以玩转linux,玩转最新redis
想要了解redis的最新特性,可是windows下的可以安装的版本最高为3.2,想要验证redis的诸如stream特性的话,就无能为力了. 解决方法之一在windows上安装虚拟机,然后再虚拟机上安 ...
- win10去除快捷方式小箭头
切忌删除注册表项: HKEY_CLASSES_ROOT -> lnkfile -> IsShortcut 这个方法以前是可以的,但是在2018年之后更新的系统就会出现任务栏图标打不开的情况 ...
- RocketMQ中Broker的启动源码分析(一)
在RocketMQ中,使用BrokerStartup作为启动类,相较于NameServer的启动,Broker作为RocketMQ的核心可复杂得多 [RocketMQ中NameServer的启动源码分 ...
- 佳木斯集训Day5
今天是ACM赛制...本来可以400的,结果毒瘤T2模拟硬生生卡掉了我90分 T1是个大水题,找规律,5分钟AC没啥压力 #include <bits/stdc++.h> #define ...
- .netcore持续集成测试篇之开篇简介及Xunit基本使用
系列目录 为了支持跨平台,微软为.net平台提供了.net core test sdk,这样第三方测试框架诸如Nunit,Xunit等只需要按照sdk提供的api规范进行开发便可以被dotnet cl ...
- k8s+istio:流量控制之灰度发布
通过Kubernetes+Istio的流量控制实现灰度发布,主要演示通过流量权重实现蓝绿,通过http自定义头实现金丝雀 准备环境 k8s和istio不想自己装的话可以在云上买个按量付费集群,用完即删 ...
- python+爬虫+微信机器人 打造属于你的网购价格监督利器
写在最前 程序是为人类服务的,最近正好身边小伙伴们在做球衣生意,当然是去nikenba专区购买了,可是有些热门球衣发布几分钟就被抢完,有些折扣球衣也是很快就被抢售一空,那么我们只能靠自己的眼睛一直盯着 ...
- Go 语言基础——go语言如何优雅的进行测试
我们可以为Go程序编写三类测试,即:功能测试(test).基准测试(benchmark),也称性能测试(example) #### 测试文件的约定 1. 测试文件的主名称应该以被测试文件主名称为先导, ...
- springboot中的springSession的存储和获取
利用redis进行springSession的存储: 存储: // 在session中保存用户信息 HttpSession session = httpRequest.getSession(true) ...
- 使用.Net Core + Vue + IdentityServer4 + Ocelot 实现一个简单的DEMO +源码
运行环境 Vue 使用的是D2admin: https://doc.d2admin.fairyever.com/zh/ Github地址:https://github.com/Fengddd/Perm ...