树形动态规划 fjutoj-2392 聚会的快乐
聚会的快乐
你要组织一个由你公司的人参加的聚会。你希望聚会非常愉快,尽可能多地找些有趣的热闹。但是劝你不要同时邀请某个人和他的上司,因为这可能带来争吵。给定N个人(姓名,他幽默的系数,以及他上司的名字),编程找到能使幽默系数和最大的若干个人。
第一行一个整数N(N<100)。接下来有N行,每一行描述一个人的信息,信息之间用空格隔开。姓名是长度不超过20的字符串,幽默系数是在0到100之间的整数。
所邀请的人最大的幽默系数和。
5
BART 1 HOMER
HOMER 2 MONTGOMERY
MONTGOMERY 1 NOBODY
LISA 3 HOMER
SMITHERS 4 MONTGOMERY
8 思路 先建树,深搜遍历,再回溯时 进行状态转移
dp[now][0] =dp[now][0]+max(dp[to][0],dp[to][1]); //0不放,1放 now为当前节点,to为子节点
dp[now][1] =dp[now][1]+dp[to][0]; //当前节点为1时,子节点一定不能有,当前节点为0时,子节点可有可无
最后输出dp[1][0],dp[1][1]中的较小值
下面附上代码
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<vector>
#include<algorithm>
using namespace std;
char s[][];
vector<int>e[];
int v[];
int dp[][];
int tot=;
int vis[];
void dfs(int now)
{
int len = e[now].size();
for(int i=; i<len; i++)
{
int to = e[now][i];
if(!vis[to])
{
vis[to]=;
dfs(to);
}
}
for(int i=; i<len; i++)
{
int to = e[now][i];
dp[now][] =dp[now][]+max(dp[to][],dp[to][]); //0不放,1放
dp[now][] =dp[now][]+dp[to][];
}
dp[now][]+=v[now];
} int main()
{
char str[];
char ttr[];
int n;
scanf("%d",&n);
for(int i=; i<n; i++)
{
int value,f1=,f2=,from,to;
scanf("%s%d%s",str,&value,ttr);
for(int j=; j<tot; j++)
{
if(!strcmp(str,s[j]))
{
from = j+;
f1=;
}
else if(!strcmp(ttr,s[j]))
{
to = j+;
f2=;
}
}
if(f1==)
{
strcpy(s[tot],str);
tot++;
from = tot;
}
if(f2==)
{
strcpy(s[tot],ttr);
tot++;
to = tot;
}
e[from].push_back(to);
e[to].push_back(from);
v[from] = value; }
vis[]=;
dfs();
printf("%d\n",max(dp[][],dp[][]));
return ;
}
树形动态规划 fjutoj-2392 聚会的快乐的更多相关文章
- 蓝桥杯 ALGO-4 结点选择 (树形动态规划)
问题描述 有一棵 n 个节点的树,树上每个节点都有一个正整数权值.如果一个点被选择了,那么在树上和它相邻的点都不能被选择.求选出的点的权值和最大是多少? 输入格式 第一行包含一个整数 n . 接下来的 ...
- 树形动态规划(树状DP)小结
树状动态规划定义 之所以这样命名树规,是因为树形DP的这一特殊性:没有环,dfs是不会重复,而且具有明显而又严格的层数关系.利用这一特性,我们可以很清晰地根据题目写出一个在树(型结构)上的记忆化搜索的 ...
- 【ACM/ICPC2013】树形动态规划专题
前言:按照计划,昨天应该是完成树形DP7题和二分图.最大流基础专题,但是由于我智商实在拙计,一直在理解树形DP的思想,所以第二个专题只能顺延到今天了.但是昨天把树形DP弄了个5成懂我是很高兴的!下面我 ...
- 树形动态规划(树形DP)入门问题—初探 & 训练
树形DP入门 poj 2342 Anniversary party 先来个题入门一下~ 题意: 某公司要举办一次晚会,但是为了使得晚会的气氛更加活跃,每个参加晚会的人都不希望在晚会中见到他的直接上 ...
- 【树形动态规划】【CTSC1997】选课 解题报告
CTSC1997-选课 描述 学校实行学分制.每门的必修课都有固定的学分,同时还必须获得相应的选修课程学分.学校开设了N(N<300)门的选修课程,每个学生可选课程的数量M是给定的.学生选修了这 ...
- 「洛谷2495」「BZOJ3052」「SDOI2001」消耗战【虚树+树形动态规划】
题目大意 给你\(k\)个点,让这一些点和一号节点断开,删去某一些边,求最小的删去边权之和. 做题的心路历程 做了\(HG\)昨天的模拟赛,深深感觉到了窝的菜,所以为了\(A\)掉T1这一道毒瘤,窝就 ...
- Codeforces 1000G Two-Paths 树形动态规划 LCA
原文链接https://www.cnblogs.com/zhouzhendong/p/9246484.html 题目传送门 - Codeforces 1000G Two-Paths 题意 给定一棵有 ...
- BZOJ1040 [ZJOI2008]骑士 基环树林(环套树) 树形动态规划
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题意概括 有n个人,每一个人有一个最恨的人. 并且,每一个人有一个权值. 一个人不可以和他最恨的人同时被选中. 现在请你求出在 ...
- Vijos1906 联合权值 NOIP2014Day1T2 树形动态规划
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - Vijos1906 题意概括 有一棵树,每一个节点都有一个权值w[i].下面说的x,y都是该树中的节点. 对于 ...
随机推荐
- Keil uVision4 ——如何新建一个项目
一.打开Keil4软件,点击Project,再点击New μVision Projrct. 二.新建一个文件夹,并在里面输入这个项目的名字. 三.点击Intel,根据实际情况选择,这里选择的是80/8 ...
- codeforces 371A K-Periodic Array
很简单,就是找第i位.i+k位.i+2*k位...........i+m*k位有多少个数字,计算出每个数出现的次数,找到出现最多的数,那么K-Periodic的第K位数肯定是这个了.这样的话需要替换的 ...
- MOCTF-MISC-writeup
小菜鸡终于想要开通博客,要开始写东西了.第一次,献给了MOCTF MISC writeup,各种借鉴大哥们的writeup,写的不好的话,算了,后果自负(嘤嘤嘤). MOCTF平台地址:www.moc ...
- 全开源C++ DirectUI 界面库SOUI 3.0更新
从2019.5.22开始,SOUI版本号更新到2.9.0.2,后面开始准备3.0的开发,历时近3个月,现在3.0的主要工作基本完成. 为了便于大家区别2.x,3.0启用了新的代码仓库:https:// ...
- C语言编程入门之--第五章C语言基本运算和表达式-part1
导读:程序要完成高级功能,首先要能够做到基本的加减乘除.本章从程序中变量的概念开始,结合之前学的输出函数和新介绍的输入函数制作简单人机交互程序,然后讲解最基础的加减法运算,自制简单计算器程序练手. 5 ...
- windows server2012 nVME和网卡等驱动和不识别RAID10问题
安装2012---不识别M.2 nVME,下官方驱动,注入到系统里 缺多驱动---用ITSK万能驱动添加:|Win8012R2.x64(可解决不支持操作系统,win10与server2012R2通用) ...
- Day3 AntV/G2图表的组成
简介 为了更好的使用G2进行数据可视化,我们需要先了解G2图表的组成及其相关概念. 完整的G2图表组成如下图所示:可以看出图表主要由axes(坐标轴axis的复数),tooltip(提示信息),gui ...
- C#之反射、元数据详解
前言 在本节中主要讲述自定义特性.反射和动态编程.自定义特性允许把自定义元数据与程序元素关联起来.这些元数据是在编译过程中创建的,并嵌入程序集中.反射是一个普通的术语,它描述了在运行过程中检查和处理程 ...
- opencv 视觉项目学习笔记(二): 基于 svm 和 knn 车牌识别
车牌识别的属于常见的 模式识别 ,其基本流程为下面三个步骤: 1) 分割: 检测并检测图像中感兴趣区域: 2)特征提取: 对字符图像集中的每个部分进行提取: 3)分类: 判断图像快是不是车牌或者 每个 ...
- vs中的system指令
vs中的system指令 system(“命令语句”);必须要用到头文件include<stdio.h> system里可以加许多指令 取消关机 shutdown -a 关机 sh ...