洛谷 P2671 求和
思路分析
直接暴力肯定是不行的,我们需要把各种相同的颜色分离出来计算。
但是只分离出来没有用,因为三元组要求中间有一个y。可以看出,x和z的奇偶性相同时,存在y使三元组成立。
所以我们用两个数组存储相同颜色的奇、偶情况,每次计算就变成计算这个序列的值。
则原式=(num[1]+num[2])*(a[num[1]]+a[num[2])+(num[1]+num[3])*(a[num[1]]+a[num[3])+(num[1]+num[4])*(a[num[1]]+a[num[4])+
...+(num[2]+num[3])*(a[num[2]]+a[num[3])+(num[2]+num[4])*(a[num[2]]+a[num[4])+
...+(num[n-1]+num[n])*(a[num[n-1]]+a[num[n])
其中,num[1]*a[num[1]]这个值被计算了n-1次,num[1]乘其他a[num[2]],a[num[3]],a[num[4]]……都为一次。
num[2]*a[num[2]]这个值被计算了n-2次,num[1]乘其他a[num[1]],a[num[3]],a[num[4]]……都为一次。
以此类推。
代码
#include<iostream>
#include<vector>
#include<cmath> using namespace std; long long n,m,a[],ans=;
//数据比较大,用longlong
vector<long long> even[],odd[];
//使用变长数组存储 int ad(int pt)
{ long long count=,ep=even[pt].size(),op=odd[pt].size(),s=;
for(int i=;i<=ep;i++)
{
s=(s+a[even[pt][i-]])%;//所有值的总和
}
for(int i=;i<=ep;i++)
{
count+=(s%+(ep-)*(a[even[pt][i-]]%))%*even[pt][i-]%;
count%=;
//一定要边/边%!
} s=;
for(int i=;i<=op;i++)
{
s=(s+a[odd[pt][i-]])%;
}
for(int i=;i<=op;i++)
{
count+=(s%+(op-)*(a[odd[pt][i-]]%))%*odd[pt][i-]%;
count%=;
} return count;
} int main()
{
long long cl;
cin>>n>>m;
for(int i=;i<=n;i++)
{
cin>>a[i];
}
for(int i=;i<=n;i++)
{
cin>>cl;
if(i&)
odd[cl].push_back(i);
else
even[cl].push_back(i);
}
for(int i=;i<=m;i++)
{
ans+=ad(i);
ans%=;
}
cout<<ans;
}
洛谷 P2671 求和的更多相关文章
- 洛谷 P2671 求和 解题报告
P2671 求和 题目描述 一条狭长的纸带被均匀划分出了\(n\)个格子,格子编号从\(1\)到\(n\) .每个格子上都染了一种颜色\(color_i\)用\([1,m]\)当中的一个整数表示),并 ...
- 洛谷P2671 求和 [数论]
题目传送门 求和 格式难调,题面就不放了. 分析: $ZYYS$的一道题. 很显然是大力推公式.我们分析一下题目,实际上限制条件就是:下标同奇偶且颜色相同的数,那么我们先拿这个公式$(x+z)*(nu ...
- NOIP2015 普及组 洛谷P2671 求和 (数学)
一道数学题...... 采用分组的思想,我们要统计答案的数对满足两个条件:同奇偶,同颜色.所以可以按这两个要求分组. 然后就是分组处理了,对于每组(有k个数),这里面的任意两对数都是满足条件的,可推出 ...
- 【桶哥的问题——吃桶-简化版】【洛谷p2671】求和
求和=>[链接] 题目相较起_rqy出的要简单很多,来自noip普及组2015 化简这个式子:x+z=2y,故x与z mod 2同余,因此和桶哥的问题——吃桶一样的思路就可以做出来啦qwq: # ...
- 洛谷——P1630 求和
P1630 求和 题目描述 求1^b+2^b+……+a^b的和除以10000的余数. 输入输出格式 输入格式: 第一行包含一个正整数N,表示共有N组测试数据: 接下来N行,每行包含两个正整数a和b. ...
- [洛谷2671]求和<前缀和&模拟>
题目链接:https://www.luogu.org/problemnew/show/P2671 这是noip2015普及组的第三题,谁说的普及组的题就一定水的不行,这道题就比较有意思的 这道题的暴力 ...
- 洛谷 P4427 求和
传送门啦 思路: 开始不肿么容易想到用倍增,但是想到需要求 $ Lca $ ,倍增这种常数小而且快的方法就很方便了.求 $ Lca $ 就是一个最普通的板子.那现在考虑怎么求题目中的结果. 树上差分可 ...
- 整除分块学习笔记+[CQOI2007]余数求和(洛谷P2261,BZOJ1257)
上模板题例题: [CQOI2007]余数求和 洛谷 BZOJ 题目大意:求 $\sum^n_{i=1}k\ mod\ i$ 的值. 等等……这题就学了三天C++的都会吧? $1\leq n,k\leq ...
- [洛谷P2261] [CQOI2007]余数求和
洛谷题目链接:[CQOI2007]余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n ...
随机推荐
- TThread类详解
TThread是一个抽象类,可以创建几个独立的线程.类关系 TObject在一个多线程的应用程序中创建一个TThread的后子类代表一个线程.每一新子类的TThread对象的实例是一个新的线程.从TT ...
- C#WebBroswer控件的使用
在WebBroswer中可以嵌入一个网页文件,通过Url属性绑定. URI,统一资源标识符,用来唯一的标识一个资源. URL,统一资源定位器,它是一种具体的URI,即URL可以用来标识一个资源. 它包 ...
- MQTT-CN MQTT协议中文版
欢迎任何形式的转载,但请务必注明出处:http://www.cnblogs.com/liangjingyang 项目地址:https://github.com/liangjingyang/MQTT-C ...
- 基于mipsel编译Qt4.6.2版本(有具体参数和编译时遇到的问题)
1.使用的configure配置为:./configure -embedded mips -little-endian -xplatform qws/linux-mips-g++ -prefix /o ...
- linux环境下使用百度云网盘
linux下经常需要备份一些文件到云端,现在能用的也就只有度娘的百度云网盘了,在github上发现一个挺好的项目,bypy,用来在linux下使用百度云. 项目地址:https://github.co ...
- Dev C++ 工程没有调试信息 解决办法
Dev C++ 工程没有调试信息 解决方法DevC++4.9.9.2中,按 F8 开始调试.提示信息为:工程没有调试信息,您想打开工程的调试选项并重新生成吗?选择是后,再按F8,仍旧是这个信息.什么原 ...
- 移动端数据爬取和Scrapy框架
移动端数据爬取 注:抓包工具:青花瓷 1.配置fiddler 2.移动端安装fiddler证书 3.配置手机的网络 - 给手机设置一个代理IP:port a. Fiddler设置 打开Fiddler软 ...
- 3011C语言_基础知识
第一章 基础知识 1.1 基本框架 //任何一个c语言程序都必须包括以下格式: int main(int argc, char *argv[] ) { : } //这是c语言的基本结构,任何一个程 ...
- Android项目开发之--------地铁时光机(一,搭建主框架)
一:先看一下框架搭建后的效果图 , 二:框架结构 (1)底部导航栏采用的是: MainActivity(主框架), MsgFragment(首页), HistoryFragment(历史清单 ...
- win2008环境mysql主从配置
一.主库相关配置.设置 step1:主库配置文件 [mysqld] # 数据库id,唯一 server-id = 1# 二进制日志文件,必填项,否则不能同步数据;如果不取名字的话,会以计算机的名字加编 ...