Consider a un-rooted tree T which is not the biological significance of tree or plant, but a tree as an undirected graph in graph theory with n nodes, labelled from 1 to n. If you cannot understand the concept of a tree here, please omit this problem. 
Now we decide to colour its nodes with k distinct colours, labelled from 1 to k. Then for each colour i = 1, 2, · · · , k, define Ei as the minimum subset of edges connecting all nodes coloured by i. If there is no node of the tree coloured by a specified colour i, Ei will be empty. 
Try to decide a colour scheme to maximize the size of E1 ∩ E2 · · · ∩ Ek, and output its size.

InputThe first line of input contains an integer T (1 ≤ T ≤ 1000), indicating the total number of test cases. 
For each case, the first line contains two positive integers n which is the size of the tree and k (k ≤ 500) which is the number of colours. Each of the following n - 1 lines contains two integers x and y describing an edge between them. We are sure that the given graph is a tree. 
The summation of n in input is smaller than or equal to 200000. 
OutputFor each test case, output the maximum size of E1 ∩ E1 ... ∩ Ek.Sample Input

3
4 2
1 2
2 3
3 4
4 2
1 2
1 3
1 4
6 3
1 2
2 3
3 4
3 5
6 2

Sample Output

1
0
1
题解:考虑某条边,则只要两边的2个顶点都大于等于k,则连边时一定会经过这条边,ans++; 参看代码:
 #include<bits/stdc++.h>
using namespace std;
#define clr(a,b,n) memset((a),(b),sizeof(int)*n)
typedef long long ll;
const int maxn = 2e5+;
int n,k,ans,num[maxn];
vector<int> vec[maxn]; void dfs(int u,int fa)
{
num[u]=;
for(int i=;i<vec[u].size();i++)
{
int v=vec[u][i];
if(v==fa) continue;
dfs(v,u);
num[u]+=num[v];
if(num[v]>=k&&n-num[v]>=k) ans++;
}
} int main()
{
int T,u,v;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&k);
clr(num,,n+); ans=;
for(int i=;i<=n;i++) vec[i].clear();
for(int i=;i<n;i++)
{
scanf("%d%d",&u,&v);
vec[u].push_back(v);
vec[v].push_back(u);
}
dfs(,-);
//for(int i=1;i<=n;++i) cout<<num[i]<<endl;
printf("%d\n",ans);
}
return ;
}

  

2017 ACM/ICPC 沈阳 L题 Tree的更多相关文章

  1. 2017 ACM/ICPC 沈阳 K题 Rabbits

    Here N (N ≥ 3) rabbits are playing by the river. They are playing on a number line, each occupying a ...

  2. 2017 ACM/ICPC 沈阳 I题 Little Boxes

    Little boxes on the hillside. Little boxes made of ticky-tacky. Little boxes. Little boxes. Little b ...

  3. 2017 ACM/ICPC 沈阳 G题 Infinite Fraction Path

    The ant Welly now dedicates himself to urban infrastructure. He came to the kingdom of numbers and s ...

  4. 2017 ACM/ICPC 沈阳 F题 Heron and his triangle

    A triangle is a Heron’s triangle if it satisfies that the side lengths of it are consecutive integer ...

  5. 2017 ACM/ICPC Asia Regional Qingdao Online

    Apple Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Submi ...

  6. 2017 ACM ICPC Asia Regional - Daejeon

    2017 ACM ICPC Asia Regional - Daejeon Problem A Broadcast Stations 题目描述:给出一棵树,每一个点有一个辐射距离\(p_i\)(待确定 ...

  7. 2017 ACM - ICPC Asia Ho Chi Minh City Regional Contest

    2017 ACM - ICPC Asia Ho Chi Minh City Regional Contest A - Arranging Wine 题目描述:有\(R\)个红箱和\(W\)个白箱,将这 ...

  8. 2017 ACM/ICPC Asia Regional Shenyang Online spfa+最长路

    transaction transaction transaction Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 132768/1 ...

  9. 2017 ACM/ICPC Shenyang Online SPFA+无向图最长路

    transaction transaction transaction Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 132768/1 ...

随机推荐

  1. 深入理解计算机系统 第三章 程序的机器级表示 Part1 第二遍

    第一遍对应笔记链接 https://www.cnblogs.com/stone94/p/9905345.html 机器级代码 计算机系统使用了多种不同形式的抽象,利用更简单的抽象模型来隐藏实现的细节. ...

  2. Netty处理器重要概念

    1.Netty的处理器可以分为两类:入站处理器和出战处理器 2.入站处理器顶层是ChannelInboundHandler,出战处理器顶层是ChannelOutboundHandler 3.数据处理时 ...

  3. asp.net core 自定义 Policy 替换 AllowAnonymous 的行为

    asp.net core 自定义 Policy 替换 AllowAnonymous 的行为 Intro 最近对我们的服务进行了改造,原本内部服务在内部可以匿名调用,现在增加了限制,通过 identit ...

  4. 三、netcore跨平台之 Linux配置nginx负载均衡

    前面两章讲了netcore在linux上部署以及配置nginx,并让nginx代理webapi. 这一章主要讲如何配置负载均衡,有些步骤在前两章讲的很详细了,所以这一章我就不会一个个截图了. 因为本人 ...

  5. nyoj 65-另一种阶乘问题 (Java 高精度)

    65-另一种阶乘问题 内存限制:64MB 时间限制:3000ms 特判: No 通过数:16 提交数:18 难度:1 题目描述: 大家都知道阶乘这个概念,举个简单的例子:5!=1*2*3*4*5.现在 ...

  6. 多线程编程(3)——synchronized原理以及使用

    一.对象头 通常在java中一个对象主要包含三部分: 对象头 主要包含GC的状态..类型.类的模板信息(地址).synchronization状态等,在后面介绍. 实例数据:程序代码中定义的各种类型的 ...

  7. rhel-6.3-i386安装samba

    1.安装samba 1).安装软件 rpm –ivh /mnt/Packages/samba-3.5.10-125.el6.i686.rpm 2).创建用户 useradd myadmin 3).设置 ...

  8. windows 10 上使用pybind11进行C++和Python代码相互调用 | Interfacing C++ and Python with pybind11 on windows 10

    本文首发于个人博客https://kezunlin.me/post/8b9c051d/,欢迎阅读! Interfacing C++ and Python with pybind11 on window ...

  9. CentOS 7下配置ISO镜像文件为本地yum源

    环境限制外网怎么办?离线环境怎么解决依赖?yum源配起来,可以解决大部分包的安装^_^ 环境: 虚拟机:VMware Workstation Pro 12.x Linux系统版本:CentOS-7-x ...

  10. Magicodes.IE之导入学生数据教程

    基础教程之导入学生数据 说明 本教程主要说明如果使用Magicodes.IE.Excel完成学生数据的Excel导入. 要点 本教程使用Magicodes.IE.Excel来完成Excel数据导入 需 ...