运用暴力解方程吸氧过了这道题

通过数据范围看,要是枚举x和y只能炸掉三成的数据。

所以考虑枚举从x1到x2枚举x,通过方程移项可知y=-(ax+c)/b,再判断y是否在y1和y2之间即可。

本题本做法主要坑点:

1、a=b=0时要特判(分为c=0和c!=0两种情况)

2、y1和y2是cmath库关键字

3、注意精度问题

#pragma GCC optimize(1)
#include<bits/stdc++.h>
#define ll long long
using namespace std; signed main(void)
{
ll a,b,c,ans=;
ll x1,x2,y_1,y_2; //y1和y2是cmath关键字,定义这两个家伙会CE
scanf("%lld%lld%lld",&a,&b,&c);
scanf("%lld%lld%lld%lld",&x1,&x2,&y_1,&y_2); if(a==&&b==) //当a=b=0
{
if(c!=) //如果c不为0,等式根本不成立
{
puts("");
return ;
} else if(c==) //如果c=0,任何一个x与y的配对都成立
{
ll x_1=abs(x2-x1)+,
x_2=abs(y_2-y_1)+,
xx=x_1*x_2;
printf("%lld\n",xx);
return ;
}
} for(ll x=x1;x<=x2;x++) //常规情况:ax+by+c=0=>-(ax+c)/b=y
{
ll axc=(a*x+c)*-;
double _ax_c=axc,
y=_ax_c/b; //计算y值
if(y>=y_1&&y<=y_2&&(a*x+b*(ll)y+c)==) ans++; //判断y是否在范围内
//此处存在精度问题,要用y的整数范围验算判断
} printf("%lld\n",ans);
return ;
}

题解 洛谷P2833 【等式】的更多相关文章

  1. 题解 洛谷P5018【对称二叉树】(noip2018T4)

    \(noip2018\) \(T4\)题解 其实呢,我是觉得这题比\(T3\)水到不知道哪里去了 毕竟我比较菜,不大会\(dp\) 好了开始讲正事 这题其实考察的其实就是选手对D(大)F(法)S(师) ...

  2. 题解 洛谷P2158 【[SDOI2008]仪仗队】

    本文搬自本人洛谷博客 题目 本文进行了一定的更新 优化了 Markdown 中 Latex 语句的运用,加强了可读性 补充了"我们仍不曾知晓得 消失的 性质5 ",加强了推导的严谨 ...

  3. 题解 洛谷 P3396 【哈希冲突】(根号分治)

    根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种 ...

  4. 题解-洛谷P5410 【模板】扩展 KMP(Z 函数)

    题面 洛谷P5410 [模板]扩展 KMP(Z 函数) 给定两个字符串 \(a,b\),要求出两个数组:\(b\) 的 \(z\) 函数数组 \(z\).\(b\) 与 \(a\) 的每一个后缀的 L ...

  5. 题解-洛谷P4229 某位歌姬的故事

    题面 洛谷P4229 某位歌姬的故事 \(T\) 组测试数据.有 \(n\) 个音节,每个音节 \(h_i\in[1,A]\),还有 \(m\) 个限制 \((l_i,r_i,g_i)\) 表示 \( ...

  6. 题解-洛谷P4724 【模板】三维凸包

    洛谷P4724 [模板]三维凸包 给出空间中 \(n\) 个点 \(p_i\),求凸包表面积. 数据范围:\(1\le n\le 2000\). 这篇题解因为是世界上最逊的人写的,所以也会有求凸包体积 ...

  7. 题解-洛谷P4859 已经没有什么好害怕的了

    洛谷P4859 已经没有什么好害怕的了 给定 \(n\) 和 \(k\),\(n\) 个糖果能量 \(a_i\) 和 \(n\) 个药片能量 \(b_i\),每个 \(a_i\) 和 \(b_i\) ...

  8. 题解-洛谷P5217 贫穷

    洛谷P5217 贫穷 给定长度为 \(n\) 的初始文本 \(s\),有 \(m\) 个如下操作: \(\texttt{I x c}\),在第 \(x\) 个字母后面插入一个 \(c\). \(\te ...

  9. 题解 洛谷 P2010 【回文日期】

    By:Soroak 洛谷博客 知识点:模拟+暴力枚举 思路:题目中有提到闰年然后很多人就认为,闰年是需要判断的其实,含有2月29号的回文串,前四位是一个闰年那么我们就可以直接进行暴力枚举 一些小细节: ...

随机推荐

  1. Of efficiency and methodology

    There are only too many articles and books which pertains to the discussion of efficiency and method ...

  2. 在vue项目中引入阿里图标库小记

    使用Vue技术栈开发不仅效率高,而且很友好,而且还有很多基于vue的UI框架,例如:element等,但是这类框架美中不足的是,图标太少.为了解决这个问题,不得不引入第三方字体库,今天以阿里图标库为例 ...

  3. Docker 核心技术

    docker是什么?为什么会出现? 容器虚拟化技术:轻量级的虚拟机(但不是虚拟机) 开发:提交代码 ——> 运维:部署 在这中间,因为环境和配置,出现问题 ——> 把代码/配置/系统/数据 ...

  4. 防止sql注入:替换危险字符

    在用户名或者密码框中输入“11‘ or ’1‘ = '1”时,生成的sql语句将为“selec * from userInfo where name = '11' or '1' = '1' and p ...

  5. 关于JSON解析的问题(js序列化及反序列化)

    我们都知道,现在的开发模式都是前后端分离的,后台返回数据给前端,前端负责数据交互并渲染到页面,所以我们需要从后端接口上获取数据显示到页面上.在接受服务器端数据数据时,一般是字符串.这时,就需要用到JS ...

  6. 不可错过的几款GitHub开源项目

    工作之余或者周末感觉无聊?不知道干什么?想继续提高技术,但是不知道做什么的同学,看过来,不妨利用闲暇时间来撸几个 GitHub 上还不错的开源项目,本文推荐的开源项目比较适合新手.及对MVP设计模式不 ...

  7. 【数学+思维】ZZULIOJ 1531: 小L的区间求和

    题目链接 题目描述 在给定的一个整数序列中,小L希望找到一个连续的区间,这个区间的和能够被k整除,请你帮小L算一下满足条件的最长的区间长度是多少. 输入 第一行输入两个整数n.k.(1 <= n ...

  8. 吉特日化MES-电子批记录普通样本

    在实施吉特日化配料系统的时候,客户希望一键式生成生产过程电子批记录,由于功能的缺失以及部分设备的数据暂时还无法完全采集到,先做一个普通样本的电子批记录格式打印. 电子批记录包含如下几个部分: 1.  ...

  9. Selenium+java - PageFactory设计模式

    前言 上一小节我们已经学习了Page Object设计模式,优势很明显,能更好的体现java的面向对象思想和封装特性.但同时也存在一些不足之处,那就是随着这种模式使用,随着元素定位获取,元素定位与页面 ...

  10. 【2017cs231n】:课程笔记-第2讲:图像分类

    [2017cs231n]:课程笔记-第2讲:图像分类 搜索微信公众号:'AI-ming3526'或者'计算机视觉这件小事' 获取更多算法.机器学习干货 csdn:https://blog.csdn.n ...