刚刚学了一种新的素数筛选法,效率比原先的要高一些,据说当n趋近于无穷大时这个的时间复杂度趋近O(n)。本人水平有限,无法证明。

这是道水题,贴代码出来重点是欧拉筛选法。我把原来普通的筛选法贴出来。

//2013-11-07-22.30
//poj 2909
#include <stdio.h>
#include <string.h> const int maxn = (1<<15)+5;
bool vis[maxn];
int pr[3416];
int cnt = 1;
void getpr()
{
for (int i = 2; i < maxn; i++)
{
if (vis[i] == 0)
pr[cnt++] = i;
for (int j = 1; j < cnt; j++)
{
if (i*pr[j] > maxn)
break;
vis[i*pr[j]] = 1;
if (i%pr[j] == 0)
break;
}
}
}
//void getpr()
//{
// for (int i = 2; i < maxn; i++)
// {
// if (vis[i])
// continue;
// else
// pr[cnt++] = i;
// for (int j = i<<1; j < maxn; j += i)
// vis[j] = true;
// }
//}
int main()
{
int n;
getpr();
while (scanf("%d", &n) && n)
{
int m = n>>1;
int ans = 0;
for (int i = 1; i < cnt; i++)
{
if (pr[i] > m)
break;
if (vis[n-pr[i]] == 0)
ans++;
}
printf("%d\n", ans);
}
return 0;
}

我把vis改成int型,然后对代码稍微改了一下 ,增加了计算总共访问过多少次vis数组的功能,欧拉筛法共访问29258次,而普通筛分访问了80298次,明显效率更低一些,改动代码如下,有兴趣可以自己试试。

//2013-11-07-22.30
//poj 2909
#include <stdio.h>
#include <string.h> const int maxn = (1<<15)+5;
int vis[maxn];
int pr[3416];
int cnt = 1; //void getpr() //欧拉筛法
//{
// for (int i = 2; i < maxn; i++)
// {
// if (vis[i] == 0)
// pr[cnt++] = i;
// for (int j = 1; j < cnt; j++)
// {
// if (i*pr[j] > maxn)
// break;
// vis[i*pr[j]]++;
// if (i%pr[j] == 0)
// break;
// }
// }
//}
void getpr() //普通筛法
{
for (int i = 2; i < maxn; i++)
{
if (vis[i])
continue;
else
pr[cnt++] = i;
for (int j = i<<1; j < maxn; j += i)
vis[j]++;
}
}
int main()
{
int n;
getpr();
int sum = 0;
for (int i = 1; i < maxn; i++)
sum += vis[i];
printf("sum = %d\n", sum); while (scanf("%d", &n) && n)
{
int m = n>>1;
int ans = 0;
for (int i = 1; i < cnt; i++)
{
if (pr[i] > m)
break;
if (vis[n-pr[i]] == 0)
ans++;
}
printf("%d\n", ans);
}
return 0;
}

poj2909 欧拉素数筛选的更多相关文章

  1. uva 11426 线性欧拉函数筛选+递推

    Problem J GCD Extreme (II) Input: Standard Input Output: Standard Output Given the value of N, you w ...

  2. HDU - 4548-美素数 (欧拉素数筛+打表)

    小明对数的研究比较热爱,一谈到数,脑子里就涌现出好多数的问题,今天,小明想考考你对素数的认识.  问题是这样的:一个十进制数,如果是素数,而且它的各位数字和也是素数,则称之为"美素数&quo ...

  3. 2018 南京预选赛 J Sum ( 欧拉素数筛 、Square-free Number、DP )

    题目链接 题意 : 定义不能被平方数整除的数为 Square-free Number 定义 F(i) = 有几对不同的 a 和 b 使得 i = a * b 且 a .b 都是 Square-free ...

  4. 素数筛总结篇___Eratosthenes筛法和欧拉筛法(*【模板】使用 )

    求素数 题目描述 求小于n的所有素数的数量. 输入 多组输入,输入整数n(n<1000000),以0结束. 输出 输出n以内所有素数的个数. 示例输入 10 0 示例输出 4 提示 以这道题目为 ...

  5. (转载)O(N)的素数筛选法和欧拉函数

    转自:http://blog.csdn.net/dream_you_to_life/article/details/43883367 作者:Sky丶Memory 1.一个数是否为质数的判定. 质数,只 ...

  6. 素数的线性筛 && 欧拉函数

    O(n) 筛选素数 #include<bits/stdc++.h> using namespace std; const int M = 1e6 + 10 ; int mindiv[M] ...

  7. BZOJ 2818 Gcd(欧拉函数+质数筛选)

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MB Submit: 9108  Solved: 4066 [Submit][Status][Discu ...

  8. 素数判断-----埃氏筛法&欧拉筛法

    埃氏筛法 /* |埃式筛法| |快速筛选素数| |15-7-26| */ #include <iostream> #include <cstdio> using namespa ...

  9. 转载:Candy? 在线性时间内求出素数与欧拉函数

    转载自:http://www.cnblogs.com/candy99/p/6200660.html 2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MB ...

随机推荐

  1. 惊:FastThreadLocal吞吐量居然是ThreadLocal的3倍!!!

    说明 接着上次手撕面试题ThreadLocal!!!面试官一听,哎呦不错哦!本文将继续上文的话题,来聊聊FastThreadLocal,目前关于FastThreadLocal的很多文章都有点老有点过时 ...

  2. spring 5.x 系列第20篇 ——spring简单邮件、附件邮件、内嵌资源邮件、模板邮件发送 (代码配置方式)

    源码Gitub地址:https://github.com/heibaiying/spring-samples-for-all 一.说明 1.1 项目结构说明 邮件发送配置类为com.heibaiyin ...

  3. 【MYSQL】mysql大数据量分页性能优化

    转载地址: http://www.cnblogs.com/lpfuture/p/5772055.html https://www.cnblogs.com/shiwenhu/p/5757250.html ...

  4. 我是这样理解--SVM,不需要繁杂公式的那种!(附代码)

    1. 讲讲SVM 1.1 一个关于SVM的童话故事 支持向量机(Support Vector Machine,SVM)是众多监督学习方法中十分出色的一种,几乎所有讲述经典机器学习方法的教材都会介绍.关 ...

  5. 小代介绍Spring Boot

    想要获取更多文章可以访问我的博客 - 代码无止境. 小代很顺利的完成了陈BOSS交代给他搭建Spring Boot示例程序的任务.但是小代是一个乐于学习的程序员,他通过一番学习总结了一篇简单介绍Spr ...

  6. Dijkstra算法与堆(C++)

    Dijkstra算法用于解决单源最短路径问题,通过逐个收录顶点来确保得到以收录顶点的路径长度为最短.      图片来自陈越姥姥的数据结构课程:https://mooc.study.163.com/l ...

  7. mysql语句优化原则

    有时候发现数据量大的时候查询起来效率就比较慢了,学习一下mysql语句优化的原则,自己在正常写sql的时候还没注意到这些,先记录下来,慢慢一点一点的学,加油! 这几篇博客写的都可以: https:// ...

  8. 20190716 NOIP模拟测试4 考试反思

    总分 127分 满分300 第一题 礼物 10分 一道期望题,看起来挺简单,但对于概率与期望这一块我还不怎么会,花了一个小时调他,最后只QJ了一下10%的测试点 第二题 通讯 90分 显然的缩点求解, ...

  9. ~~函数基础(七):生成器&迭代器~~

    进击のpython 生成器 上来说个这,就有点抽象了! 我们先整点活儿 宁,准备好了吗? 直接相位猛冲! 列表生成器 需求来了,老弟!我有一个数组 a = [1, 2, 3, 4, 5, 6, 7, ...

  10. ElasticSearch7.2安装

    1.环境 Java -version:java11 centos: 7.2 elasticsearch: 7.2 2.获取压缩包 wget https://artifacts.elastic.co/d ...