更新、更全的《机器学习》的更新网站,更有python、go、数据结构与算法、爬虫、人工智能教学等着你:https://www.cnblogs.com/nickchen121/

决策树C4.5算法

为了解决决策树ID3算法的不足,ID3算法的作者昆兰基于它的不足改进了决策树ID3算法。但是可能会有人有疑问,既然上一个决策树算法叫做ID3算法,为什么改进版本不叫做ID4或者ID5呢?因为当时决策树过于火爆,有人二次创新把ID4、ID5都用掉了,由此作者另辟蹊径把ID3算法的改进版本称为C4算法,后来C4算法又一次升级便有了现在的C4.5算法。

一、决策树C4.5算法学习目标

  1. 使用C4.5算法对连续特征值离散化
  2. 信息增益比
  3. 使用C4.5算法对特征值加权
  4. 决策树C4.5算法步骤
  5. 决策树C4.5算法优缺点

二、决策树C4.5算法详解

上一次说到决策树ID3算法有4个缺点,而这次作者也是基于这4个缺点改进了算法,也就是现在的C4.5算法。

假设现有一个训练集\(D\),特征集\(A\),训练集中有\(m\)个样本,每个样本有\(n\)个特征,我们通过该训练集聊一聊作者对C4.5算法做了哪些改进。

2.1 连续特征值离散化

ID3算法的第一个缺点:没有考虑到连续值的情况。

假设现有一个特征\(F\)的特征值为连续值,从大到小排序为\(f_1,f_2,\ldots,f_m\),C4.5算法对相邻样本间的特征值\(f_i,f_{i+1}\)取平均数,一共可以得到\(m-1\)个划分点,其中第\(j\)个划分点可以表示为
\[
S_j = {\frac {f_i + f_{i+1}} {2}}
\]
对于这\(m-1\)个划分点,分别计算以该点作为二元分类点的信息增益比,选择信息增益比最大的点作为该连续特征的二元离散分类点,把改点记作\(f_t\),则特征值小于\(f_t\)的点记作\(c_1\);特征值大于\(f_t\)的点记作\(c_2\),这样就实现了连续特征值的离散化。

2.2 信息增益比

ID3算法的第二个缺点:以信息增益作为划分训练数据集的特征,存在于偏向于选择取值较多的特征的问题。

信息增益作为标准容易偏向于取值较多的特征,因此可以使用信息增益比作为划分节点的标准。信息增益比的概念已经在《熵和信息增益》一文中介绍过,这里只给出公式
\[
g_R(D,A) = {\frac{g(D,A)}{H_A(D)}}
\]
由于特征越多的特征对应的特征熵\(H_A(D)\)越大,则信息增益比\(g_R(D,A)\)则会变小,因此可以校正信息增益容易偏向于取值较多的特征的问题。

2.3 剪枝

ID3算法的第三个缺点:没有考虑过拟合问题。

决策树一般采用剪枝的方法解决过拟合问题,剪枝的具体思路将在《CART树》一文中细讲。

2.4 特征值加权

ID3算法的第四个缺点:没有考虑特征中含有缺失值的情况。

假设某个特征\(F\)有2个特征值\(f_1,f_2\),先设定缺失\(F\)特征的样本\(D_i\)的关于特征\(F\)的特征值权重都为1,即\(f_1\)和\(f_2\)。假设\(2\)个特征值对应的无缺失值的样本个数为\(3\)和\(5\),现在把特征值\(f_1,f_2\)重新划入样本\(D_i\)中,在样本\(D_i\)中\(f_1\)的权重调节为\({\frac{3}{8}}\),\(f_2\)的权重调节为\({\frac{5}{8}}\),即样本\(D_i\)的特征\(F\)的特征值为\({\frac{3}{8}}*f_1和{\frac{5}{8}}*f_2\)。

计算样本\(D_i\)的特征\(F\)的信息增益比的时候,及计算\({\frac{3}{8}}*f_1\)和\({\frac{5}{8}}*f_2\)的信息增益比。

三、决策树C4.5算法流程

3.1 输入

假设现有一个训练集\(D\),特征集\(A\),阈值\(\epsilon\)。

3.2 输出

C4.5算法决策树。

3.3 流程

  1. 初始化信息增益的阈值\(\epsilon\)
  2. 如果\(D\)中的所有样本都属于同一类\(C_k\),则返回单节点树\(T\),标记类别为\(C_k\)
  3. 如果\(A\)为空集,则返回单节点树\(T\),标记类别为\(D\)中样本数最大的类\(C_k\)
  4. 计算\(A\)中各个特征对输出\(D\)的信息增益比,选择信息增益比最大的\(A_g\)
  5. 如果\(A_g\)小于阈值\(\epsilon\),则返回单节点数\(T\),标记类别为\(D\)中样本数最大的类\(C_k\)
  6. 如果\(A_g\)大于阈值\(\epsilon\),则按照特征\(A_g\)的不同取值\(A_{g_i}\)把\(D\)分割成若干个子集\(D_i\),每个子集生成一个子节点,子节点对应特征值为\(A_{g_i}\),递归调用\(2-6\)步,得到子树\(T_i\)并返回

四、决策树C4.5算法的优缺点

4.1 优点

  1. 理论清晰,方法简单
  2. 学习能力强

4.2 缺点

  1. 只能用于分类
  2. C4.5算法由于使用了熵的概念,即决策树的生成需要大量的熵值计算,并且如果特征值为连续值,还需要进行排序运算
  3. 使用模型较为复杂的多叉树结构

五、小结

决策树C4.5算法流程上和决策树ID3算法大相径庭,只是在决策树ID3算法上的某一步流程进行了优化,总而言之,它这种处理方式还是治标不治本的,并且还是无法处理回归问题。

接下来我们将要将一个改革意义的决策树,目前scikit-learn算法中以及集成学习中都使用该树作为目标决策树,即决策树CART算法。

02-22 决策树C4.5算法的更多相关文章

  1. 决策树-C4.5算法(三)

    在上述两篇的文章中主要讲述了决策树的基础,但是在实际的应用中经常用到C4.5算法,C4.5算法是以ID3算法为基础,他在ID3算法上做了如下的改进: 1) 用信息增益率来选择属性,克服了用信息增益选择 ...

  2. Python实现决策树C4.5算法

    为什么要改进成C4.5算法 原理 C4.5算法是在ID3算法上的一种改进,它与ID3算法最大的区别就是特征选择上有所不同,一个是基于信息增益比,一个是基于信息增益. 之所以这样做是因为信息增益倾向于选 ...

  3. 决策树 -- C4.5算法

    C4.5是另一个分类决策树算法,是基于ID3算法的改进,改进点如下: 1.分离信息   解释:数据集通过条件属性A的分离信息,其实和ID3中的熵:   2.信息增益率   解释:Gain(A)为获的A ...

  4. python实现决策树C4.5算法(在ID3基础上改进)

    一.概论 C4.5主要是在ID3的基础上改进,ID3选择(属性)树节点是选择信息增益值最大的属性作为节点.而C4.5引入了新概念"信息增益率",C4.5是选择信息增益率最大的属性作 ...

  5. 决策树C4.5算法——计算步骤示例

    使用决策树算法手动计算GOLF数据集 步骤: 1.通过信息增益率筛选分支. (1)共有4个自变量,分别计算每一个自变量的信息增益率. 首先计算outlook的信息增益.outlook的信息增益Gain ...

  6. 决策树(C4.5)原理

    决策树c4.5算法是在决策树ID3上面演变而来. 在ID3中: 信息增益 按属性A划分数据集S的信息增益Gain(S,A)为样本集S的熵减去按属性A划分S后的样本子集的熵,即 在此基础上,C4.5计算 ...

  7. 深入了解机器学习决策树模型——C4.5算法

    本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习专题的第22篇文章,我们继续决策树的话题. 上一篇文章当中介绍了一种最简单构造决策树的方法--ID3算法,也就是每次选择一个特 ...

  8. 决策树-预测隐形眼镜类型 (ID3算法,C4.5算法,CART算法,GINI指数,剪枝,随机森林)

    1. 1.问题的引入 2.一个实例 3.基本概念 4.ID3 5.C4.5 6.CART 7.随机森林 2. 我们应该设计什么的算法,使得计算机对贷款申请人员的申请信息自动进行分类,以决定能否贷款? ...

  9. 决策树之C4.5算法

    决策树之C4.5算法 一.C4.5算法概述 C4.5算法是最常用的决策树算法,因为它继承了ID3算法的所有优点并对ID3算法进行了改进和补充. 改进有如下几个要点: 用信息增益率来选择属性,克服了ID ...

随机推荐

  1. 网络编程之TCP/IP各层详解

    网络编程之TCP/IP各层详解 我们将应用层,表示层,会话层并作应用层,从TCP/IP五层协议的角度来阐述每层的由来与功能,搞清楚了每层的主要协议,就理解了整个物联网通信的原理. 首先,用户感知到的只 ...

  2. 把windows下的压缩包放到Linux目录下去

    今天在自学redis时出现了问题,因为楼主linux也是空白纸,前几天安装了Linux后就只会基本的命令,其他的一概不通啊,所以当redis要在Linux中用时就傻眼了,索性就在windows中下载了 ...

  3. MySQL基础/数据库和表的设计

    MySQL基础 一:安装MySQL(按步骤操作,如果下载后使用不了,试着用360安全卫士卸载MySQL,清除残留的,方便在下载造成不必要的麻烦:如果这样也不行,那就需要重做系统在进行下载) 二:创建数 ...

  4. spring mvc Response header content type

    Xml代码 <bean class ="org.springframework.web.servlet.mvc.annotation.AnnotationMethodHandlerAd ...

  5. caffe学习三:使用Faster RCNN训练自己的数据

    本文假设你已经完成了安装,并可以运行demo.py 不会安装且用PASCAL VOC数据集的请看另来两篇博客. caffe学习一:ubuntu16.04下跑Faster R-CNN demo (基于c ...

  6. [Optimized Python] 17 - Performance bottle-neck

    前言 对于一门编程语言,没接触到“优化”和“库代码”的源码理解程度,不足以谈“掌握”二字. 本篇的学习笔记,同时也意味着自己终于触及到了Python的junior国际水准.(joke) 要学的东西有很 ...

  7. servlet request、response的中文乱码问题

    一.request 1.get请求 get请求的参数是在请求行中的,浏览器使用utf-8进行编码,数据的编码一般为UTF-8,而url请求行的默认编码为ISO-8859-1,一般来说有以下方式可以解决 ...

  8. elastic操作-索引重命名,索引副本数修改

    目前我们使用的elastic版本为2.3.5 当前版本没有直接的curl操作可以更改索引的名称,索引的副本数. 有直接更改索引副本数的api. curl -XPUT "192.168.1.1 ...

  9. jar 命令使用

    1.jar命令一般用来对jar包文件处理,jar包是由JDK安装目录\bin\jar.exe命令生成的,当我们安装好JDK,设置好path路径,就可以正常使用jar.exe命令,它会用lib\tool ...

  10. Vue2.0+ElementUI实现表格翻页的实例

    参考地址: https://www.cnblogs.com/zhouyifeng/p/7706815.html