http://www.lydsy.com/JudgeOnline/problem.php?id=3295

题意:简单明了。

思路:终于好像有点明白CDQ分治处理三维偏序了。把删除操作看作是插入操作,那么可以按照插入的时间顺序看作是一维x,插入的数在原本序列的下标是一维y,插入的数本身是一维z。那么问题可以转化成每插入一个数(xx,yy,zz),求有多少个数(x,y,z)使得 x < xx,y < yy,z > zz 。一开始先对 x 进行排序,然后进行CDQ分治。这样可以干掉一维,保证随着时间递增。在分治的时候,通过标记判断那一个点属于左半区间还是右半区间,然后对 y 进行排序。如果在左半区间,那么它的 x 必定是小于 右半区间的,它所修改的结果会影响右半区间的查询,因此要去更新左半区间的元素。因为 y 是升序的,那么正着查询大于该点的 z 值的个数,就是查询可以满足 y < yy, z > zz 的条件的个数了。反着查询小于该点的 z 值的个数,即满足 y > yy, z < zz 的条件的个数。这样就可以找全插入一个数对整个数组产生的逆序对的个数了。

 #include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long LL;
#define N 100010
struct node {
int x, y, z, f;
node () {}
node (int x, int y, int z) : x(x), y(y), z(z) {}
} p[N], s[N]; int bit[N], gap, num[N], Hash[N];
LL ans[N]; bool cmpx(const node &a, const node &b) {
return a.x < b.x;
}
bool cmpy(const node &a, const node &b) {
if(a.y == b.y) return a.z < b.z;
return a.y < b.y;
} int lowbit(int x) { return x & (-x); } LL query(int x) {
LL ans = ;
while(x) { ans += bit[x]; x -= lowbit(x); }
return ans;
} void update(int x, int w) {
while(x <= gap) { bit[x] += w; x += lowbit(x); }
} void CDQ(int l, int r) {
if(l == r) return ;
int m = (l + r) >> , cnt = ;
CDQ(l, m); CDQ(m + , r);
for(int i = l; i <= m; i++) s[++cnt] = p[i], s[cnt].f = ; // 在左半部分
for(int i = m + ; i <= r; i++) s[++cnt] = p[i], s[cnt].f = ; // 在右半部分
sort(s + , s + + cnt, cmpy); // 根据y排序
for(int i = ; i <= cnt; i++) { // 正着扫
if(!s[i].f) update(s[i].z, ); // 左半部分对右半部分的查询有影响因此更新
else ans[s[i].x] += query(gap) - query(s[i].z); // 在[m,r]区间查询大于它的z的数量
}
for(int i = ; i <= cnt; i++) if(!s[i].f) update(s[i].z, -);
for(int i = cnt; i >= ; i--) { // 逆着扫
if(!s[i].f) update(s[i].z, );
else ans[s[i].x] += query(s[i].z); // 在[m,r]区间查询小于它的z的数量
}
for(int i = ; i <= cnt; i++) if(!s[i].f) update(s[i].z, -);
} int main() {
int n, m;
while(~scanf("%d%d", &n, &m)) {
int a, cnt = ;
gap = ;
for(int i = ; i <= n; i++) {
scanf("%d", &num[i]);
Hash[num[i]] = i;
p[i] = node(, i, num[i]);
if(num[i] > gap) gap = num[i];
}
for(int i = ; i <= m; i++) {
scanf("%d", &a);
p[Hash[a]].x = n - i + ;
}
for(int i = ; i <= n; i++)
if(p[i].x == ) p[i].x = ++cnt;
sort(p + , p + + n, cmpx);
memset(bit, , sizeof(bit));
CDQ(, n);
LL res = ;
for(int i = ; i <= n; i++) res += ans[i];
for(int i = n; i > n - m; i--) {
printf("%lld\n", res);
res -= ans[i];
}
}
return ;
}

BZOJ 3295:[Cqoi2011]动态逆序对(三维偏序 CDQ分治+树状数组)的更多相关文章

  1. BZOJ 3295 [CQOI2011]动态逆序对 (三维偏序CDQ+树状数组)

    题目大意: 题面传送门 还是一道三维偏序题 每次操作都可以看成这样一个三元组 $<x,w,t>$ ,操作的位置,权值,修改时间 一开始的序列看成n次插入操作 我们先求出不删除时的逆序对总数 ...

  2. BZOJ 3295: [Cqoi2011]动态逆序对

    3295: [Cqoi2011]动态逆序对 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3865  Solved: 1298[Submit][Sta ...

  3. Bzoj 3295: [Cqoi2011]动态逆序对 分块,树状数组,逆序对

    3295: [Cqoi2011]动态逆序对 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2886  Solved: 924[Submit][Stat ...

  4. 【刷题】BZOJ 3295 [Cqoi2011]动态逆序对

    Description 对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数.给1到n的一个排列,按照某种顺序依次删除m个元素,你的任务是在每次删除一个元素之前统计 ...

  5. BZOJ 3295: [Cqoi2011]动态逆序对 [CDQ分治]

    RT 传送门 首先可以看成倒着插入,求逆序对数 每个数分配时间(注意每个数都要一个时间)$t$,$x$位置,$y$数值 $CDQ(l,r)$时归并排序$x$ 然后用$[l,mid]$的加入更新$[mi ...

  6. bzoj 3295 [Cqoi2011]动态逆序对(cdq分治,BIT)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3295 [题意] n个元素依次删除m个元素,求删除元素之前序列有多少个逆序对. [思路] ...

  7. bzoj 3295: [Cqoi2011]动态逆序对(树套树 or CDQ分治)

    Description 对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数.给1到n的一个排列,按照某种顺序依次删除m个元素,你的任务是在每次删除一个元素之前统计 ...

  8. BZOJ 3295 [Cqoi2011]动态逆序对 ——CDQ分治

    时间.位置.数字为三个属性. 排序时间,CDQ位置,树状数组处理数字即可. #include <cstdio> #include <cstring> #include < ...

  9. 2018.07.01 BZOJ3295: [Cqoi2011]动态逆序对(带修主席树)

    3295: [Cqoi2011]动态逆序对 **Time Limit: 10 Sec Memory Limit: 128 MB Description 对于序列A,它的逆序对数定义为满足i<j& ...

随机推荐

  1. docker端口映射或启动容器时报错Error response from daemon: driver failed programming external connectivity on endpoint quirky_allen

    现象: [root@localhost ~]# docker run -d -p 9000:80 centos:httpd /bin/sh -c /usr/local/bin/start.shd5b2 ...

  2. 实现:C#窗体中的文本框只能输入中文汉字,其他输入无效。问:正则表达式怎么用?

    原文:实现:C#窗体中的文本框只能输入中文汉字,其他输入无效.问:正则表达式怎么用? private void textBox1_KeyPress(object sender, KeyPressEve ...

  3. ELK日志系统:Elasticsearch + Logstash + Kibana 搭建教程 good

    环境:OS X 10.10.5 + JDK 1.8 步骤: 一.下载ELK的三大组件 Elasticsearch下载地址: https://www.elastic.co/downloads/elast ...

  4. 如何快速生成数据文件(fsutil命令,使用CreateFile和SetEndOfFile API函数,fopen和fseek RTL函数)

    1. fsutil 命令 文件会瞬间生成,因为实际上Windows只是分配了名称.地址和空间给该文件,并没有读写任何文件内容 100M=1024x1024x100 fsutil file create ...

  5. VS2012 调试Web项目 遭遇 HTTP 错误 500.23 - Internal Server Error

    原文:VS2012 调试Web项目 遭遇 HTTP 错误 500.23 - Internal Server Error 在使用vs2012 调试Web站点时 报错 500.23,详细如图 此错误是因为 ...

  6. 解决C++项目使用sqlite中文乱码问题

    我参考的是这篇文章:https://www.2cto.com/database/201411/354891.html 理论是:sqlite使用的是UTF-8,C++中用的字符串是ascii或unico ...

  7. Advanced Installer 打包后,安装包在WIN10下重启后再次运行安装的解决办法

    原文:Advanced Installer 打包后,安装包在WIN10下重启后再次运行安装的解决办法 前几个月使用Advanced Installer 打包了一堆安装包,其中有使用默认主题的,也有根据 ...

  8. CSS技巧分享:如何用css制作横排二级下拉菜单

    原文:CSS技巧分享:如何用css制作横排二级下拉菜单 导航菜单是每个网站所必备的功能,也是每个学习制作网站的朋友所必须接触的,如何用css样式制作一个简单漂亮的二级下拉菜单呢,下来小编就一步一步教大 ...

  9. 『SHELL』--SHELL脚本执行方式(转)

    Shell脚本的执行方式: 注明:wd代表“脚本保存的目录” 1.fork 语法:/wd/shell.sh fork是最普通的, 就是直接在脚本里面用/wd/shell.sh来调用shell.sh这个 ...

  10. 静态dll的问题终于搞定了

    导入plugin,构建qapplicationhttps://forum.qt.io/topic/60940/qt-static-dll-x64-using-qapplication-issues/2 ...