非确定的自动机NFA确定化为DFA
摘要:
在编译系统中,词法分析阶段是整个编译系统的基础。对于单词的识别,有限自动机FA是一种十分有效的工具。有限自动机由其映射f是否为单值而分为确定的有限自动机DFA和非确定的有限自动机NFA。在非确定的有限自动机NFA中,由于某些状态的转移需从若干个可能的后续状态中进行选择,故一个NFA对符号串的识别就必然是一个试探的过程。这种不确定性给识别过程带来的反复,无疑会影响到FA的工作效率。因此,对于一个非确定的有限自动机NFA M,经常的做法是构造一个确定的有限自动机DFA M’。
有穷自动机(也称有限自动机)作为一种识别装置,能准确地识别正规集,即识别正规文法所定义的语言和正规式所表示的集合。引入有穷自动机理论,正是为词法分析程序的自动构造寻找特殊的方法和工具。
有穷自动机分为两类:确定的有穷自动机(Deterministic Finite Automata,DFA)和不确定的有穷自动机(Nondeterministic Finite Automata,NFA)。下面分别给出确定的有穷自动机和不确定的有穷自动机的定义、与其有关的概念、不确定的有穷自动机的确定化以及确定的有穷自动机的化简等算法。
NFA转换为等价的DFA:在有穷自动机的理论里,有这样的定理:设L为一个由不确定的有穷自动机接受的集合,则存在一个接受L的确定的有穷自动机。这里不对定理进行证明,只介绍一种算法,将NFA转换成接受同样语言的DFA,这种算法称为子集法。宝阀为一个NFA构造相应的DFA的基本想法是让DFA的每一个状态对应NFA的一组状态。也就是让DFA使用它的状态去记录在NFA读入一个输入符号后可能达到的所有状态,在读入输入符号串a1a2...an,之后,DFA处在那样一个状态,该状态表示这个NFA的状态的一个子集T,T是从NFA的开始状态沿着某个标记为a1a2...an,的路径可以到达的那些状态构成的。
题目:
1.设有 NFA M=( {0,1,2,3}, {a,b},f,0,{3} ),其中 f(0,a)={0,1} f(0,b)={0} f(1,b)={2} f(2,b)={3}
画出状态转换矩阵,状态转换图,并说明该NFA识别的是什么样的语言。
| a | b | |
| 0 | 0,1 | 0 |
| 1 | 2 | |
| 2 | 3 | |
| 3 |

语言:(a | b)*abb
2.NFA 确定化为 DFA
1.解决多值映射:子集法
1). 上述练习1的NFA
| a | b | ||
| A | {0} | {0,1} | {0} |
| B | {0,1} | {0,1} | {0,2} |
| C | {0,2} | {0,1} | {0,3} |
| D | {0,3} | {0,1} | {0} |
DFA图:

2). P64页练习3

DFA状态转换矩阵
| 0 | 1 | ||
| A | {S} | {V,Q} | {Q,U} |
| B | {V,Q} | {Z,V} | {Q,U} |
| C | {Q,U} | {V} | {Q,U,Z} |
| D | {V} | {Z} | |
| E | {Z,V} | {Z} | {Z} |
| F | {Q,U,Z} | {Z} | {Q,Z} |
| G | {Z} | {Z} | {Z} |
| H | {Q,Z} | {Z} | {Q,Z} |
DFA图:

2.解决空弧:对初态和所有新状态求ε-闭包
1). 发给大家的图2

DFA状态转换矩阵
| 0 | 1 | 2 | ||
| X | ε{A}={ABC} | ε{A}={ABC} | ε{B}={BC} | ε{C}={C} |
| Y | ε{BC} | ε{B}={BC} | ε{C}={C} | |
| Z | ε{C} | ε{C}={C} |
DFA图:

语法:(0*11* | 0*)22*
2).P50图3.6

DFA状态转换矩阵
| a | b | ||
| 0 | ε{0}={01247} | ε{38}={3671248} | ε{5}={567124} |
| 1 | ε{1234678} | ε{38}={1234678} | ε{59}={5671249} |
| 2 | ε{124567} | ε{38}={3671248} | ε{5}={567124} |
| 3 | ε{1245679} | ε{38}={3671248} | ε{510}={56712410} |
| 4 | ε{12456710} | ε{38}={3671248} | ε{5}={567124} |
DFA图:

子集法:
f(q,a)={q1,q2,…,qn},状态集的子集
将{q1,q2,…,qn}看做一个状态A,去记录NFA读入输入符号之后可能达到的所有状态的集合。
步骤:
1).根据NFA构造DFA状态转换矩阵
①确定DFA的字母表,初态(NFA的所有初态集)
②从初态出发,经字母表到达的状态集看成一个新状态
③将新状态添加到DFA状态集
④重复23步骤,直到没有新的DFA状态
2).画出DFA
3).看NFA和DFA识别的符号串是否一致。
非确定的自动机NFA确定化为DFA的更多相关文章
- 第八次作业-非确定的自动机NFA确定化为DFA
NFA 确定化为 DFA 子集法: f(q,a)={q1,q2,…,qn},状态集的子集 将{q1,q2,…,qn}看做一个状态A,去记录NFA读入输入符号之后可能达到的所有状态的集合. 步骤: 1. ...
- 编译原理之非确定的自动机NFA确定化为DFA
1.设有 NFA M=( {0,1,2,3}, {a,b},f,0,{3} ),其中 f(0,a)={0,1} f(0,b)={0} f(1,b)={2} f(2,b)={3} 画出状态转换矩阵 ...
- 作业八——非确定的自动机NFA确定化为DFA
NFA 确定化为 DFA 子集法: f(q,a)={q1,q2,…,qn},状态集的子集 将{q1,q2,…,qn}看做一个状态A,去记录NFA读入输入符号之后可能达到的所有状态的集合. 步骤: 1. ...
- 第八次——非确定的自动机NFA确定化为DFA
NFA 确定化为 DFA 子集法: f(q,a)={q1,q2,…,qn},状态集的子集 将{q1,q2,…,qn}看做一个状态A,去记录NFA读入输入符号之后可能达到的所有状态的集合. 步骤: 1. ...
- 编译原理:非确定的自动机NFA确定化为DFA
1.设有 NFA M=( {0,1,2,3}, {a,b},f,0,{3} ),其中 f(0,a)={0,1} f(0,b)={0} f(1,b)={2} f(2,b)={3} 画出状态转换矩阵 ...
- 第八次-非确定的自动机NFA确定化为DFA
提交作业 NFA 确定化为 DFA 子集法: f(q,a)={q1,q2,…,qn},状态集的子集 将{q1,q2,…,qn}看做一个状态A,去记录NFA读入输入符号之后可能达到的所有状态的集合. ...
- NFA转化为DFA
NFA(不确定的有穷自动机)转化为DFA(确定的有穷自动机) NFA转换DFA,通常是将带空串的NFA(即:ε-NFA)先转化为不带空串的NFA(即:NFA),然后再转化为DFA. 提示:ε是空串的意 ...
- 非确定有限状态自动机的构建(二)——将CharVal转换为NFA
保留版权,转载注明出处:潘军彪的个人博客(http://blog.csdn.net/panjunbiao/article/details/9378933) 将上下文无关文法读入内存之后,可以将它转换成 ...
- 非确定有限状态自动机的构建(一)——NFA的定义和实现
保留版权,转载需注明出处(http://blog.csdn.net/panjunbiao). 非确定有限状态自动机(Nondeterministic Finite Automata,NFA)由以下元素 ...
随机推荐
- rocketmq学习(二) rocketmq集群部署与图形化控制台安装
1.rocketmq图形化控制台安装 虽然rocketmq为用户提供了使用命令行管理主题.消费组以及broker配置的功能,但对于不够熟练的非运维人员来说,命令行的管理界面还是较难使用的.为此,我们可 ...
- Java秒杀系统优化的工程要点
这篇博客是笔者学习慕课网若鱼老师的<Java秒杀系统方案优化 高性能高并发实战>课程的学习笔记.若鱼老师授课循循善诱,讲解由浅入深,欢迎大家支持. 本文记录课程中的注意点,方便以后code ...
- 深入全面理解面向对象的 JavaScript
深入全面理解面向对象的 JavaScript (原著: 曾 滢, 软件工程师, IBM,2013 年 4 月 17 日) JavaScript 函数式脚本语言特性以及其看似随意的编写风格,导致长期以来 ...
- web前端开发面试题(附答案)-3
1.用纯css创建一个三角形的原理: .demo{ width:0; height: 0; border: 5px solid transparent; border-left-color: red; ...
- Skeleton with Assimp 骨骼动画解析
Skeleton with Assimp 骨骼动画解析 骨骼动画是图形学中十分常见应用很广泛的一个技术,也是比较基础的内容,作为图形学的工程师需要将这一部分内容梳理清晰,主要关键在于几点:第一,分清楚 ...
- JVM 调优 - JPS
Java命令学习系列(一)——Jps 2015-04-16 分类:Java 阅读(23993) 评论(7) 阿里大牛珍藏架构资料,点击链接免费获取 jps位于jdk的bin目录下,其作用是显示当前系统 ...
- 百万it资源百度网盘链接分享
自己大量时间整理的优质资源,容量达3000多G,有需要的朋友可以微我,资源截图: 面试资料: 书籍类: 视频类: 以上只是部分资源,想要资源的亲请加微信咨询. 欢迎加微信咨询,请备注资源: 独乐乐不 ...
- 阿里云服务器CentOS6.9安装Tomcat
上篇讲了CentOS6.9安装jdk,这篇来讲Tomcat的安装,本来准备使用yum命令安装的,但是通过 yum search tomcat 发现只有tomcat6,所以就在官网下了一个tomcat8 ...
- C语言入门-字符串
还是要继续学习,每天给自己打气. 字符数组 char word[] = {'H','e','l','l','o'}; 这不是c语言的字符串,不能用字符串的方式做计算 一.字符串 char word[] ...
- .NET进阶篇-语言章-1-Generic泛型深入
内容目录 一.概述二.泛型的好处三.泛型使用1.泛型方法2.泛型类.泛型接口四.泛型的功能1.泛型中的默认值2.约束3.协变逆变5.泛型委托4.泛型缓存五.总结 一.概述 泛型我们一定都用过,最常见的 ...