摘要:

 在编译系统中,词法分析阶段是整个编译系统的基础。对于单词的识别,有限自动机FA是一种十分有效的工具。有限自动机由其映射f是否为单值而分为确定的有限自动机DFA和非确定的有限自动机NFA。在非确定的有限自动机NFA中,由于某些状态的转移需从若干个可能的后续状态中进行选择,故一个NFA对符号串的识别就必然是一个试探的过程。这种不确定性给识别过程带来的反复,无疑会影响到FA的工作效率。因此,对于一个非确定的有限自动机NFA M,经常的做法是构造一个确定的有限自动机DFA M’。

 有穷自动机(也称有限自动机)作为一种识别装置,能准确地识别正规集,即识别正规文法所定义的语言和正规式所表示的集合。引入有穷自动机理论,正是为词法分析程序的自动构造寻找特殊的方法和工具。
有穷自动机分为两类:确定的有穷自动机(Deterministic Finite Automata,DFA)和不确定的有穷自动机(Nondeterministic Finite Automata,NFA)。下面分别给出确定的有穷自动机和不确定的有穷自动机的定义、与其有关的概念、不确定的有穷自动机的确定化以及确定的有穷自动机的化简等算法。

 NFA转换为等价的DFA:在有穷自动机的理论里,有这样的定理:设L为一个由不确定的有穷自动机接受的集合,则存在一个接受L的确定的有穷自动机。这里不对定理进行证明,只介绍一种算法,将NFA转换成接受同样语言的DFA,这种算法称为子集法。宝阀为一个NFA构造相应的DFA的基本想法是让DFA的每一个状态对应NFA的一组状态。也就是让DFA使用它的状态去记录在NFA读入一个输入符号后可能达到的所有状态,在读入输入符号串a1a2...an,之后,DFA处在那样一个状态,该状态表示这个NFA的状态的一个子集T,T是从NFA的开始状态沿着某个标记为a1a2...an,的路径可以到达的那些状态构成的。

题目:

1.设有 NFA M=( {0,1,2,3}, {a,b},f,0,{3} ),其中 f(0,a)={0,1}  f(0,b)={0}  f(1,b)={2}  f(2,b)={3}

画出状态转换矩阵,状态转换图,并说明该NFA识别的是什么样的语言。

  a b
0 0,1 0
1   2
2   3
3    

语言:(a | b)*abb

2.NFA 确定化为 DFA

1.解决多值映射:子集法

1). 上述练习1的NFA

    a b
A {0} {0,1} {0}
B {0,1} {0,1} {0,2}
C {0,2} {0,1} {0,3}
D {0,3} {0,1} {0}

DFA图:

2). P64页练习3

DFA状态转换矩阵

    0 1
A {S} {V,Q} {Q,U}
B {V,Q} {Z,V} {Q,U}
C {Q,U} {V} {Q,U,Z}
D {V} {Z}  
{Z,V} {Z} {Z}
{Q,U,Z} {Z}  {Q,Z} 
{Z}  {Z}   {Z} 
{Q,Z}   {Z}  {Q,Z} 

DFA图:

2.解决空弧:对初态和所有新状态求ε-闭包

1). 发给大家的图2

DFA状态转换矩阵

    0
 X  ε{A}={ABC}   ε{A}={ABC}   ε{B}={BC}   ε{C}={C}
 Y  ε{BC}    ε{B}={BC}  ε{C}={C} 
 Z  ε{C}       ε{C}={C}

DFA图:

语法:(0*11* | 0*)22*

2).P50图3.6

DFA状态转换矩阵

    a b
 0  ε{0}={01247}  ε{38}={3671248}  ε{5}={567124}
 1   ε{1234678}  ε{38}={1234678}  ε{59}={5671249}
 2   ε{124567}  ε{38}={3671248}  ε{5}={567124} 
 3   ε{1245679}  ε{38}={3671248}  ε{510}={56712410}
 4   ε{12456710}  ε{38}={3671248}  ε{5}={567124} 

DFA图:

子集法:

f(q,a)={q1,q2,…,qn},状态集的子集

将{q1,q2,…,qn}看做一个状态A,去记录NFA读入输入符号之后可能达到的所有状态的集合。

步骤:

1).根据NFA构造DFA状态转换矩阵

①确定DFA的字母表,初态(NFA的所有初态集)

②从初态出发,经字母表到达的状态集看成一个新状态

③将新状态添加到DFA状态集

④重复23步骤,直到没有新的DFA状态

2).画出DFA

3).看NFA和DFA识别的符号串是否一致。

非确定的自动机NFA确定化为DFA的更多相关文章

  1. 第八次作业-非确定的自动机NFA确定化为DFA

    NFA 确定化为 DFA 子集法: f(q,a)={q1,q2,…,qn},状态集的子集 将{q1,q2,…,qn}看做一个状态A,去记录NFA读入输入符号之后可能达到的所有状态的集合. 步骤: 1. ...

  2. 编译原理之非确定的自动机NFA确定化为DFA

    1.设有 NFA M=( {0,1,2,3}, {a,b},f,0,{3} ),其中 f(0,a)={0,1}  f(0,b)={0}  f(1,b)={2}  f(2,b)={3} 画出状态转换矩阵 ...

  3. 作业八——非确定的自动机NFA确定化为DFA

    NFA 确定化为 DFA 子集法: f(q,a)={q1,q2,…,qn},状态集的子集 将{q1,q2,…,qn}看做一个状态A,去记录NFA读入输入符号之后可能达到的所有状态的集合. 步骤: 1. ...

  4. 第八次——非确定的自动机NFA确定化为DFA

    NFA 确定化为 DFA 子集法: f(q,a)={q1,q2,…,qn},状态集的子集 将{q1,q2,…,qn}看做一个状态A,去记录NFA读入输入符号之后可能达到的所有状态的集合. 步骤: 1. ...

  5. 编译原理:非确定的自动机NFA确定化为DFA

    1.设有 NFA M=( {0,1,2,3}, {a,b},f,0,{3} ),其中 f(0,a)={0,1}  f(0,b)={0}  f(1,b)={2}  f(2,b)={3} 画出状态转换矩阵 ...

  6. 第八次-非确定的自动机NFA确定化为DFA

     提交作业 NFA 确定化为 DFA 子集法: f(q,a)={q1,q2,…,qn},状态集的子集 将{q1,q2,…,qn}看做一个状态A,去记录NFA读入输入符号之后可能达到的所有状态的集合. ...

  7. NFA转化为DFA

    NFA(不确定的有穷自动机)转化为DFA(确定的有穷自动机) NFA转换DFA,通常是将带空串的NFA(即:ε-NFA)先转化为不带空串的NFA(即:NFA),然后再转化为DFA. 提示:ε是空串的意 ...

  8. 非确定有限状态自动机的构建(二)——将CharVal转换为NFA

    保留版权,转载注明出处:潘军彪的个人博客(http://blog.csdn.net/panjunbiao/article/details/9378933) 将上下文无关文法读入内存之后,可以将它转换成 ...

  9. 非确定有限状态自动机的构建(一)——NFA的定义和实现

    保留版权,转载需注明出处(http://blog.csdn.net/panjunbiao). 非确定有限状态自动机(Nondeterministic Finite Automata,NFA)由以下元素 ...

随机推荐

  1. 修改tomcat 使用的JVM的内存

    一,前言 在文章让tomcat使用指定JDK中,我让tomcat成功使用了我指定的JDK1.8,而不是环境变量中配置的JDK10.本篇文章我们就来探讨一下怎么设置tomcat使用的JVM的内存. 为什 ...

  2. 浅谈 Vector

    目录 浅谈Vector 1.容器基本操作 2.vector 初始化 3.vector的赋值与swap 4.vector的增删改除 1.增加元素 2.访问元素 3.删除元素 4.元素的大小 浅谈Vect ...

  3. Python网络爬虫实战(五)批量下载B站收藏夹视频

    我们除了爬取文本信息,有的时候还需要爬媒体信息,比如视频图片音乐等.就拿B站来说,我的收藏夹内的视频可能随时会失效,所以把它们下载到本地是非常保险的一件事. 对于这种大量列表型的数据,可以猜测B站收藏 ...

  4. 品Spring:SpringBoot轻松取胜bean定义注册的“第一阶段”

    上一篇文章强调了bean定义注册占Spring应用的半壁江山.而且详细介绍了两个重量级的注册bean定义的类. 今天就以SpringBoot为例,来看看整个SpringBoot应用的bean定义是如何 ...

  5. hbase配置-集群无法启动问题

    root@cslave2:/]#jps 2834 NodeManager 2487 DataNode 12282 Jps 2415 QuorumPeerMain root@cslave2:/]#sud ...

  6. 站内搜索(ELK)之数据目录

    在使用elasticsearch建设站内搜索时,随着数据不断丰富,为了数据管理更加精细化,必须建立并实时维护“数据目录”(在程序设计中对应的叫法“数据字典”). 数据目录需要包含以下几个维度:数据名称 ...

  7. 【ADO.NET基础-Session】Session的基本应用

    在服务端存储状态的对象:Session和Application 在客户端存储状态的对象:Cookie 1.Session:每个独立的浏览器都会创建一个独立的Session,不是一台电脑一个Sessio ...

  8. 瀑布流实例及懒加载(echo.js)

    瀑布流布局: 图片等宽,不定高,按最低高度来顺序排列:实现方法:获取每次获取四行中最低高度对应的一行,将下一张加载的图片放在该位置,每次加载前都获取最低高度: ①请求图片的接口    地址此php文件 ...

  9. js 验证数据类型的4中方法

    1.typeof  可以检验基本数据类型 但是引用数据类型(复杂数据类型)无用: 总结 : typeof  无法识别引用数据类型  包括 bull; 2.instanceof是一个二元运算符,左操作数 ...

  10. Spark 学习笔记之 共享变量

    共享变量: 共享变量通常情况下,当向Spark操作(如map,reduce)传递一个函数时,它会在一个远程集群节点上执行,它会使用函数中所有变量的副本.这些变量被复制到所有的机器上,远程机器上并没有被 ...