「BZOJ2510」弱题
这题的dp式子应该挺好写的,我是不会告诉你我开始写错了的,设f[i][j]为操作前i次,取到j小球的期望个数(第一维这么大显然不可做),那么
f[i][j]=f[i-1][j](累加)+1*$\frac{f[i-1][j-1]}{M}$ - 1* $\frac{f[i-1][j]}{M}$(前i-1次拿到的j-1号球转化为j号球)以及(前i-1次拿到的j号球转化为j+1号球)注意1要特殊考虑。移项得
$f[i][j]=(1-1/m)*f[i-1][j]+(1/m)*f[i-1][j-1]$,开始并没有发现他和矩阵快速幂有啥关系,因为矩阵乘的式子是$f[i][j]=∑f[i][k]*f[k][j]$,但是想想矩阵快速幂是怎么优化肥不拉几数列的:

而上面的dp式子化一下和这个很像:第一维发现并没有什么卵用,而且k这么大显然是快速幂的指数啊,所以把它干掉,就成了f[j]=(1-1/m)*f[j]+(1/m)*f[j-1],以n=4为例初始矩阵和转移矩阵分别是这样的:
(为啥没有对齐啊)然后就可以用矩阵快速幂优化递推,复杂度$n^3logk$,然而n是一千啊,时间上不可过,而且即使不考虑时间,1000*1000的数组传参直接RE(亲测),
但是仔细看看转移矩阵有没有什么特点?它是一个循环矩阵!!!所以只需要存下第一行,矩阵乘的时候以$n^2$的复杂度重构两个数组,然后以$n^2$的复杂度计算ans第一行。
#include<iostream>
#include<cstring>
#include<cstdio>
#define LL long long
using namespace std;
struct jz
{
double m[2][1010];
}cs;
double tmpa[1010][1010],tmpb[1010][1010];
int n,m,k;
jz operator * (const jz &a,const jz &b)
{
jz ans;
memset(ans.m,0,sizeof(ans.m));
memset(tmpa,0,sizeof(tmpa));
memset(tmpb,0,sizeof(tmpb));
for(int j=1;j<=n;j++)tmpa[1][j]=a.m[1][j],tmpb[1][j]=b.m[1][j];
for(int i=2;i<=n;i++)
for(int j=1;j<=n;j++)
if(j==1)tmpa[i][j]=tmpa[i-1][n], tmpb[i][j]=tmpa[i-1][n];
else tmpa[i][j]=tmpa[i-1][j-1],tmpb[i][j]=tmpb[i-1][j-1];
for(int j=1;j<=n;j++)
for(int k=1;k<=n;k++)
ans.m[1][j]+=tmpa[1][k]*tmpb[k][j];
return ans;
}
jz operator ^ (jz &a,int &b)
{
jz ans=a,tem=a;b--;
while(b)
{
if(b&1)ans=ans*tem;
tem=tem*tem;
b=b>>1;
}
return ans;
}
double a[1010],f[1010];
signed main()
{
// freopen("in.txt","r",stdin); cin>>n>>m>>k;
for(int i=1;i<=n;i++)
cin>>a[i];
cs.m[1][1]=(double)(1-1.0/m);
cs.m[1][2]=(double)1.0/m;
cs=cs^k;
memset(tmpa,0,sizeof(tmpa));
for(int j=1;j<=n;j++)tmpa[1][j]=cs.m[1][j];
for(int i=2;i<=n;i++)
for(int j=1;j<=n;j++)
if(j==1)tmpa[i][j]=tmpa[i-1][n];
else tmpa[i][j]=tmpa[i-1][j-1];
for(int i=n;i;i--)
{
for(int j=1;j<=n;j++)
f[i]+=a[j]*tmpa[n-i+1][n-j+1];
}
for(int i=1;i<=n;i++)
printf("%0.3lf\n",f[i]);
}
「BZOJ2510」弱题的更多相关文章
- 「BZOJ2510」弱题(矩阵乘法,降维)
有M个球,一开始每个球均有一个初始标号,标号范围为1-N且为整数,标号为i的球有ai个,并保证Σai = M. 每次操作等概率取出一个球(即取出每个球的概率均为1/M),若这个球标号为k(k < ...
- 【BZOJ2510】弱题 期望DP+循环矩阵乘法
[BZOJ2510]弱题 Description 有M个球,一开始每个球均有一个初始标号,标号范围为1-N且为整数,标号为i的球有ai个,并保证Σai = M. 每次操作等概率取出一个球(即取出每个球 ...
- 「CQOI2006」简单题 线段树
「CQOI2006」简单题 线段树 水.区间修改,单点查询.用线段树维护区间\([L,R]\)内的所有\(1\)的个数,懒标记表示为当前区间是否需要反转(相对于区间当前状态),下方标记时懒标记取反即可 ...
- 【BZOJ2510】弱题
题目大意 有\(M\)个球,一开始每个球均有一个初始标号,标号范围为\(1-N\)且为整数,标号为i的球有\(a_i\)个,并保证\(\sum a_i=M\). 每次操作等概率取出一个球(即取出每个球 ...
- 【LOJ#6066】「2017 山东一轮集训 Day3」第二题(哈希,二分)
[LOJ#6066]「2017 山东一轮集训 Day3」第二题(哈希,二分) 题面 LOJ 题解 要哈希是很显然的,那么就考虑哈希什么... 要找一个东西可以表示一棵树,所以我们找到了括号序列. 那么 ...
- LOJ#10117. 「一本通 4.1 练习 2」简单题
LOJ#10117. 「一本通 4.1 练习 2」简单题 题目描述 题目来源:$CQOI 2006$ 有一个$n$个元素的数组,每个元素初始均为$0$.有$m$条指令,要么让其中一段连续序列数字反转— ...
- LibreOJ #2036. 「SHOI2015」自动刷题机
#2036. 「SHOI2015」自动刷题机 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 题目描述 曾经发明了信号增幅仪的发明家 SHTSC 又公开 ...
- 「NOIP2009」Hankson 的趣味题
Hankson 的趣味题 [内存限制:$128 MiB$][时间限制:$1000 ms$] [标准输入输出][题目类型:传统][评测方式:文本比较] 题目描述 Hanks 博士是 BT(Bio-Tec ...
- Solution -「基环树」做题记录
写的大多只是思路,比较简单的细节和证明过程就不放了,有需者自取. 基环树简介 简单说一说基环树吧.由名字扩展可得这是一类以环为基础的树(当然显然它不是树. 通常的表现形式是一棵树再加一条非树边,把图画 ...
随机推荐
- 通过ajax从jsp页面传输数据到web层,并从web层返回数据给jsp页面
jsp中ajax代码: 1 $.ajax({ var id = $("#studentid").val();//获取标签中的学生id url:'${pageContext.requ ...
- Log4j---文件解析以及语法使用
Log4j------是Apache的一个开源项目,通过使用Log4j,我们可以控制日志信息输送的目的地是控制台.文件.GUI组件,甚至是套接口服务器.NT的事件记录器.UNIX Syslog守护进程 ...
- 一致性Hash算法原理,java实现,及用途
学习记录: 一致性Hash算法原理及java实现:https://blog.csdn.net/suifeng629/article/details/81567777 一致性Hash算法介绍,原理,及使 ...
- 凸优化 & 1概念
---恢复内容开始--- 放射集合 系数之和为1 相加仍然能在集合内,就是 纺射集合 子空间加一个常熟 就是纺射集合 , 例题2.1 一类特殊的线性方程组的解可以看作纺射 集合 纺射包 aff C 是 ...
- java-静态-单例-继承
概要图 一.静态 1.1 静态方法 创建对象就是为了产生实例,并进行数据的封装. 而调用功能时,确没有用到这些对象中封装的数据. 该对象的创建有意义吗?虽然可以编译并运行,但是在堆内存中空间较为浪费. ...
- 洛谷P1979 [NOIP2013提高组Day2T3]华容道
P1979 华容道 题目描述 [问题描述] 小 B 最近迷上了华容道,可是他总是要花很长的时间才能完成一次.于是,他想到用编程来完成华容道:给定一种局面, 华容道是否根本就无法完成,如果能完成, 最少 ...
- truncate 、delete、drop的区别
TRUNCATE TABLE 在功能上与不带 Where 子句的 Delete 语句相同:二者均删除表中的全部行.但 TRUNCATE TABLE 比 Delete 速度快,且使用的系统和事务日志资源 ...
- js this工作原理
js中的this是个很妙的东西,你经常不知道它到底在指向谁,又是谁在调用它. 通用判断方法: 1.this总是指向它的直接调用者 var a={ user:'Artimis', fn:function ...
- Direct2D 第1篇 最简单的D2D程序
原文:Direct2D 第1篇 最简单的D2D程序 编译之前,得先安装DirectX SDK #include <windows.h> #include <d2d1.h> #i ...
- python LEGB原理简要介绍