题解 SP375 【QTREE - Query on a tree】
\]
这题在 \(\text{Luogu}\) 上竟然不能交 \(C++\) ,会一直 \(Waiting\) ,只能交非 \(C++\) 的语言。
所以打完了 \(C++\) 要转到 \(C\) 才能过。
要把什么 \(swap\) , \(max\) 各种函数换成手写,以及 \(C++\) 的特色(例如 using namespace std; 和 inline )都要去掉。
详情见 \(Code\) 。
\]
给出一个 \(n\) 个点的带权树,需要支持以下操作:
CHANGE i ti将第 \(i\) 条边的权值改为 \(t_i\) 。QUERY a b询问 \(a\) 到 \(b\) 的路径上最大边权。
多组数据。
\]
从这个询问 " 查询路径信息,边带修 " 来说,我们可以知道这是一个树剖板子题。
不了解树剖的童鞋可以去了解一下,过一下 树剖模板 。
只不过这题不是一般的 " 点带修 " 而是 " 边带修 " ,也不要紧。
注意到除了根,每个节点都有父亲,那么我们可以把边的信息转化到点身上,每个节点的点权是它与它父亲所形成的边的边权。
例如 \(1\) 到 \(2\) 的一条长度为 \(3\) 的边(此时 \(1\) 是 \(2\) 的父亲),那么我们可以理解为 \(2\) 的点权是 \(3\) 。
这样就可以用树剖维护了。
但是令 \(z=\text{lca}(x,y)\) ,我们发现 \((fa[z],z)\) 这条边是不能被算进答案的。
在查询的最后一步,\(x\) 和 \(y\) 会在同一条重链上(设 \(dep_x<dep_y\)),此时 \(x\) 就是 \(z\) ,由于重链上的节点的 \(dfs\) 序是连续的,所以查询 \([dfn_x+1,dfn_y]\) 这段区间的最大值就可以避开计算 \(z\) 的信息了。
\]
#include<stdio.h>
#define N 10100
#define M 20100
int read()
{
int x=0,f=1;char s=getchar();
while(s<'0'||s>'9'){if(s=='-')f=-f;s=getchar();}
while(s>='0'&&s<='9'){x=x*10+s-'0';s=getchar();}
return x*f;
}
int tmp;
int max(int a,int b){return a>b?a:b;}
int T;
int n;
struct Edge{
int u,v,w;
}e[N];
int tot,head[N],ver[M],edge[M],Next[M];
void add(int u,int v,int w)
{
ver[++tot]=v; edge[tot]=w; Next[tot]=head[u]; head[u]=tot;
}
int val[N];
int d[N];
int fu[N];
int size[N];
int son[N];
void dfs1(int u)
{
size[u]=1;
for(int i=head[u];i;i=Next[i])
{
int v=ver[i],w=edge[i];
if(v==fu[u])continue;
fu[v]=u;
val[v]=w;
d[v]=d[u]+1;
dfs1(v);
size[u]+=size[v];
if(size[son[u]]<size[v])son[u]=v;
}
}
int QwQ;
int dfn[N],idx[N];
int top[N];
void dfs2(int u)
{
QwQ++;
dfn[u]=QwQ,idx[QwQ]=u;
if(son[u])
{
top[son[u]]=top[u];
dfs2(son[u]);
}
for(int i=head[u];i;i=Next[i])
{
int v=ver[i];
if(v==fu[u]||v==son[u])continue;
top[v]=v;
dfs2(v);
}
}
struct SegmentTree{
int l,r;
int max;
}t[N*4];
void upd(int p)
{
t[p].max=max(t[p*2].max,t[p*2+1].max);
}
void build(int p,int l,int r)
{
t[p].l=l,t[p].r=r;
if(l==r)
{
t[p].max=val[idx[l]];
return;
}
int mid=(l+r)/2;
build(p*2,l,mid);
build(p*2+1,mid+1,r);
upd(p);
}
void change(int p,int delta,int val)
{
if(t[p].l==t[p].r)
{
t[p].max=val;
return;
}
int mid=(t[p].l+t[p].r)/2;
if(delta<=mid)
change(p*2,delta,val);
else
change(p*2+1,delta,val);
upd(p);
}
int ask(int p,int l,int r)
{
if(l<=t[p].l&&t[p].r<=r)return t[p].max;
int mid=(t[p].l+t[p].r)/2;
int val=0;
if(l<=mid)
val=max(val,ask(p*2,l,r));
if(mid<r)
val=max(val,ask(p*2+1,l,r));
return val;
}
int path_ask(int u,int v)
{
int ans=0;
while(top[u]!=top[v])
{
if(d[top[u]]>d[top[v]])tmp=u,u=v,v=tmp;
ans=max(ans,ask(1,dfn[top[v]],dfn[v]));
v=fu[top[v]];
}
if(u==v)return ans;
if(d[u]>d[v])tmp=u,u=v,v=tmp;
ans=max(ans,ask(1,dfn[u]+1,dfn[v]));
return ans;
}
void work()
{
tot=QwQ=0;
for(int i=1;i<=n;i++)
head[i]=son[i]=0;
n=read();
for(int i=1;i<n;i++)
{
e[i].u=read(),e[i].v=read(),e[i].w=read();
add(e[i].u,e[i].v,e[i].w),add(e[i].v,e[i].u,e[i].w);
}
d[1]=1,top[1]=1;
dfs1(1),dfs2(1);
build(1,1,n);
char opt[10];
while(scanf("%s",opt),opt[0]!='D')
{
int x=read(),y=read();
switch(opt[0])
{
case 'C':{
if(d[e[x].u]>d[e[x].v])
tmp=e[x].u,e[x].u=e[x].v,e[x].v=tmp;
change(1,dfn[e[x].v],y);
break;
}
case 'Q':{
printf("%d\n",path_ask(x,y));
break;
}
}
}
}
int main()
{
T=read();
while(T--) work();
return 0;
}
\]
题解 SP375 【QTREE - Query on a tree】的更多相关文章
- SP375 QTREE - Query on a tree (树剖)
题目 SP375 QTREE - Query on a tree 解析 也就是个蓝题,因为比较长 树剖裸题(基本上),单点修改,链上查询. 顺便来说一下链上操作时如何将边上的操作转化为点上的操作: 可 ...
- SP375 QTREE - Query on a tree
题意大意 给定\(n\)个点的树,边按输入顺序编号为\(1,2,...n-1\),要求作以下操作: CHANGE \(i\) \(t_i\) 将第\(i\)条边权值改为\(t_i\),QUERY \( ...
- QTREE - Query on a tree
QTREE - Query on a tree 题目链接:http://www.spoj.com/problems/QTREE/ 参考博客:http://blog.sina.com.cn/s/blog ...
- SPOJ QTREE Query on a tree 树链剖分+线段树
题目链接:http://www.spoj.com/problems/QTREE/en/ QTREE - Query on a tree #tree You are given a tree (an a ...
- SPOJ VJudge QTREE - Query on a tree
Query on a tree Time Limit: 851MS Memory Limit: 1572864KB 64bit IO Format: %lld & %llu Submi ...
- SPOJ - QTREE Query on a tree题解
题目大意: 一棵树,有边权,有两个操作:1.修改一条边的权值:2.询问两点间路径上的边的权值的最大值. 思路: 十分裸的树链剖分+线段树,无非是边权要放到深度大的一端的点上,但是有两个坑爹的地方,改了 ...
- spoj QTREE - Query on a tree(树链剖分+线段树单点更新,区间查询)
传送门:Problem QTREE https://www.cnblogs.com/violet-acmer/p/9711441.html 题解: 树链剖分的模板题,看代码比看文字解析理解来的快~~~ ...
- SPOJ QTREE Query on a tree --树链剖分
题意:给一棵树,每次更新某条边或者查询u->v路径上的边权最大值. 解法:做过上一题,这题就没太大问题了,以终点的标号作为边的标号,因为dfs只能给点分配位置,而一棵树每条树边的终点只有一个. ...
- SPOJ375 QTREE - Query on a tree
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...
随机推荐
- (01)大话设计模式-简单工厂-java实现
1.运算接口 public interface Operation { public double getResult(double NumberA , double NumberB); } 2.加减 ...
- PHP的一些安全设置
小伙伴们新年好啊,又有半个月没有更新博客了.更新也比较随性,想起什么就写点什么,方便和大家工作同学习总结. 最近和同事说起了PHP安全相关的问题,记录下一些心得体会. 由于脚本语言和早期版本设计的诸多 ...
- 通过httpClient设置代理Ip
背景: 我们有个车管系统,需要定期的去查询车辆的违章,之前一直是调第三方接口去查,后面发现数据不准确(和深圳交警查的对不上),问题比较多.于是想干脆直接从深圳交警上查,那不就不会出问题了吗,但是问题又 ...
- P1640 [SCOI2010]连续攻击游戏 二分图最大匹配 匈牙利算法
题目描述 lxhgww最近迷上了一款游戏,在游戏里,他拥有很多的装备,每种装备都有2个属性,这些属性的值用[1,10000]之间的数表示.当他使用某种装备时,他只能使用该装备的某一个属性.并且每种装备 ...
- 村庄之间建立邮局 - 区间 dp
There is a straight highway with villages alongside the highway. The highway is represented as an in ...
- java架构之路(多线程)JUC并发编程之Semaphore信号量、CountDownLatch、CyclicBarrier栅栏、Executors线程池
上期回顾: 上次博客我们主要说了我们juc并发包下面的ReetrantLock的一些简单使用和底层的原理,是如何实现公平锁.非公平锁的.内部的双向链表到底是什么意思,prev和next到底是什么,为什 ...
- 盘一盘Tidyverse| 筛行选列之select,玩转列操作
原文链接:https://mp.weixin.qq.com/s/ldO0rm3UM_rqlFnU3euYaA 2020年,开封 <R 数据科学>R for data science,系统学 ...
- 使用log4j把日志写到mysql数据库
log4j可以支持将log输出到文件,数据库,甚至远程服务器,本教程以mysql数据库为例来讲解: 作者:Jesai 没有伞的孩子,只能光脚奔跑! 1.数据库设计 数据库表 表4-1日志表(log) ...
- Kafka Topic 体系结构 - 复制 故障转移 并行处理
本文介绍了 Kafka Topic 的体系结构,并讨论了如何使用分区进行故障转移和并行处理. 1. Kafka Topic, Log, Partition Kafka Topic(主题) 是一个有名字 ...
- WeihanLi.Npoi 根据模板导出Excel
WeihanLi.Npoi 根据模板导出Excel Intro 原来的导出方式比较适用于比较简单的导出,每一条数据在一行,数据列虽然自定义程度比较高,如果要一条数据对应多行就做不到了,于是就想支持根据 ...