import numpy as np

a = np.arange(8)
print ('原始数组:')
print (a)
print ('\n') b = a.reshape(4,2)
print ('修改后的数组:')
print (b)
numpy.ndarray.flat 是一个数组元素迭代器
import numpy as np a = np.arange(9).reshape(3,3)
print ('原始数组:')
for row in a:
print (row) #对数组中每个元素都进行处理,可以使用flat属性,该属性是一个数组元素迭代器:
print ('迭代后的数组:')
for element in a.flat:
print (element)

import numpy as np

a = np.arange(8).reshape(2,4)

print ('原数组:')
print (a)
print ('\n')
# 默认按行 print ('展开的数组:')
print (a.flatten())
print ('\n') print ('以 F 风格顺序展开的数组:')
print (a.flatten(order = 'F'))
numpy.ravel() 展平的数组元素,顺序通常是"C风格",返回的是数组视图
numpy.ravel(a, order='C')
参数说明:
order:'C' -- 按行,'F' -- 按列,'A' -- 原顺序,'K' -- 元素在内存中的出现顺序。
import numpy as np

a = np.arange(8).reshape(2,4)

print ('原数组:')
print (a)
print ('\n') print ('调用 ravel 函数之后:')
print (a.ravel())
print ('\n') print ('以 F 风格顺序调用 ravel 函数之后:')
print (a.ravel(order = 'F'))

import numpy as np

a = np.arange(12).reshape(3,4)

print ('原数组:')
print (a )
print ('\n') print ('对换数组:')
print (np.transpose(a))
import numpy as np

a = np.arange(12).reshape(3,4)

print ('原数组:')
print (a)
print ('\n') print ('转置数组:')
print (a.T)

import numpy as np

# 创建了三维的 ndarray
a = np.arange(8).reshape(2,2,2) print ('原数组:')
print (a)
print ('\n')
# 将轴 2 滚动到轴 0(宽度到深度) print ('调用 rollaxis 函数:')
print (np.rollaxis(a,2))
# 将轴 0 滚动到轴 1:(宽度到高度)
print ('\n') print ('调用 rollaxis 函数:')
print (np.rollaxis(a,2,1))

import numpy as np

# 创建了三维的 ndarray
a = np.arange(8).reshape(2,2,2) print ('原数组:')
print (a)
print ('\n')
# 现在交换轴 0(深度方向)到轴 2(宽度方向) print ('调用 swapaxes 函数后的数组:')
print (np.swapaxes(a, 2, 0))
numpy.broadcast 用于模仿广播的对象,它返回一个对象,该对象封装了将一个数组广播到另一个数组的结果。
该函数使用两个数组作为输入参数
import numpy as np

x = np.array([[1], [2], [3]])
y = np.array([4, 5, 6]) # 对 y 广播 x
b = np.broadcast(x,y)
# 它拥有 iterator 属性,基于自身组件的迭代器元组 print ('对 y 广播 x:')
r,c = b.iters # Python3.x 为 next(context) ,Python2.x 为 context.next()
print (next(r), next(c))
print (next(r), next(c))
print ('\n')
# shape 属性返回广播对象的形状 print ('广播对象的形状:')
print (b.shape)
print ('\n')
# 手动使用 broadcast 将 x 与 y 相加
b = np.broadcast(x,y)
c = np.empty(b.shape) print ('手动使用 broadcast 将 x 与 y 相加:')
print (c.shape)
print ('\n')
c.flat = [u + v for (u,v) in b] print ('调用 flat 函数:')
print (c)
print ('\n')
# 获得了和 NumPy 内建的广播支持相同的结果 print ('x 与 y 的和:')
print (x + y)
numpy.broadcast_to 函数将数组广播到新形状。它在原始数组上返回只读视图。 它通常不连续。 如果新形状不符合 NumPy 的广播规则,该函数可能会抛出ValueError。
import numpy as np

a = np.arange(4).reshape(1,4)

print ('原数组:')
print (a)
print ('\n') print ('调用 broadcast_to 函数之后:')
print (np.broadcast_to(a,(4,4)))

import numpy as np

x = np.array(([1,2],[3,4]))

print ('数组 x:')
print (x)
print ('\n')
y = np.expand_dims(x, axis = 0) print ('数组 y:')
print (y)
print ('\n') print ('数组 x 和 y 的形状:')
print (x.shape, y.shape)
print ('\n')
# 在位置 1 插入轴
y = np.expand_dims(x, axis = 1) print ('在位置 1 插入轴之后的数组 y:')
print (y)
print ('\n') print ('x.ndim 和 y.ndim:')
print (x.ndim,y.ndim)
print ('\n') print ('x.shape 和 y.shape:')
print (x.shape, y.shape)

import numpy as np

x = np.arange(9).reshape(1,3,3)

print ('数组 x:')
print (x)
print ('\n')
y = np.squeeze(x) print ('数组 y:')
print (y)
print ('\n') print ('数组 x 和 y 的形状:')
print (x.shape, y.shape)

import numpy as np

a = np.array([[1,2],[3,4]])

print ('第一个数组:')
print (a)
print ('\n')
b = np.array([[5,6],[7,8]]) print ('第二个数组:')
print (b)
print ('\n')
# 两个数组的维度相同 print ('沿轴 0 连接两个数组:')
print (np.concatenate((a,b)))
print ('\n') print ('沿轴 1 连接两个数组:')
print (np.concatenate((a,b),axis = 1))

import numpy as np

a = np.array([[1,2],[3,4]])

print ('第一个数组:')
print (a)
print ('\n')
b = np.array([[5,6],[7,8]]) print ('第二个数组:')
print (b)
print ('\n') print ('沿轴 0 堆叠两个数组:')
print (np.stack((a,b),0))
print ('\n') print ('沿轴 1 堆叠两个数组:')
print (np.stack((a,b),1))
numpy.hstack 是 numpy.stack 函数的变体,它通过水平堆叠来生成数组。
import numpy as np

a = np.array([[1,2],[3,4]])

print ('第一个数组:')
print (a)
print ('\n')
b = np.array([[5,6],[7,8]]) print ('第二个数组:')
print (b)
print ('\n') print ('水平堆叠:')
c = np.hstack((a,b))
print (c)
print ('\n')
numpy.vstack 是 numpy.stack 函数的变体,它通过垂直堆叠来生成数组。
import numpy as np

a = np.array([[1,2],[3,4]])

print ('第一个数组:')
print (a)
print ('\n')
b = np.array([[5,6],[7,8]]) print ('第二个数组:')
print (b)
print ('\n') print ('竖直堆叠:')
c = np.vstack((a,b))
print (c)

import numpy as np

a = np.arange(9)

print ('第一个数组:')
print (a)
print ('\n') print ('将数组分为三个大小相等的子数组:')
b = np.split(a,3)
print (b)
print ('\n') print ('将数组在一维数组中表明的位置分割:')
b = np.split(a,[4,7])
print (b)
numpy.hsplit 函数用于水平分割数组,通过指定要返回的相同形状的数组数量来拆分原数组。
import numpy as np

harr = np.floor(10 * np.random.random((2, 6)))
print ('原array:')
print(harr) print ('拆分后:')
print(np.hsplit(harr, 3))
numpy.vsplit 沿着垂直轴分割,其分割方式与hsplit用法相同。
import numpy as np

a = np.arange(16).reshape(4,4)

print ('第一个数组:')
print (a)
print ('\n') print ('竖直分割:')
b = np.vsplit(a,2)
print (b)

import numpy as np

a = np.array([[1,2,3],[4,5,6]])

print ('第一个数组:')
print (a)
print ('\n') print ('第一个数组的形状:')
print (a.shape)
print ('\n')
b = np.resize(a, (3,2)) print ('第二个数组:')
print (b)
print ('\n') print ('第二个数组的形状:')
print (b.shape)
print ('\n')
# 要注意 a 的第一行在 b 中重复出现,因为尺寸变大了 print ('修改第二个数组的大小:')
b = np.resize(a,(3,3))
print (b)
numpy.append 函数在数组的末尾添加值。 追加操作会分配整个数组,并把原来的数组复制到新数组中。 此外,输入数组的维度必须匹配否则将生成ValueError。
append 函数返回的始终是一个一维数组。
numpy.append(arr, values, axis=None)
参数说明:
arr:输入数组
values:要向arr添加的值,需要和arr形状相同(除了要添加的轴)
axis:默认为 None。当axis无定义时,是横向加成,返回总是为一维数组!当axis有定义的时候,分别为0和1的时候。当axis有定义的时候,分别为0和1的时候(列数要相同)。当axis为1时,数组是加在右边(行数要相同)。
import numpy as np

a = np.array([[1,2,3],[4,5,6]])

print ('第一个数组:')
print (a)
print ('\n') print ('向数组添加元素:')
print (np.append(a, [7,8,9]))
print ('\n') print ('沿轴 0 添加元素:')
print (np.append(a, [[7,8,9]],axis = 0))
print ('\n') print ('沿轴 1 添加元素:')
print (np.append(a, [[5,5,5],[7,8,9]],axis = 1))
numpy.insert 函数在给定索引之前,沿给定轴在输入数组中插入值。
如果值的类型转换为要插入,则它与输入数组不同。 插入没有原地的,函数会返回一个新数组。 此外,如果未提供轴,则输入数组会被展开。
numpy.insert(arr, obj, values, axis)
参数说明:
arr:输入数组
obj:在其之前插入值的索引
values:要插入的值
axis:沿着它插入的轴,如果未提供,则输入数组会被展开
import numpy as np

a = np.array([[1,2],[3,4],[5,6]])

print ('第一个数组:')
print (a)
print ('\n') print ('未传递 Axis 参数。 在插入之前输入数组会被展开。')
print (np.insert(a,3,[11,12]))
print ('\n')
print ('传递了 Axis 参数。 会广播值数组来配输入数组。') print ('沿轴 0 广播:')
print (np.insert(a,1,[11],axis = 0))
print ('\n') print ('沿轴 1 广播:')
print (np.insert(a,1,11,axis = 1))

import numpy as np

a = np.arange(12).reshape(3,4)

print ('第一个数组:')
print (a)
print ('\n') print ('未传递 Axis 参数。 在插入之前输入数组会被展开。')
print (np.delete(a,5))
print ('\n') print ('删除第二列:')
print (np.delete(a,1,axis = 1))
print ('\n') print ('包含从数组中删除的替代值的切片:')
a = np.array([1,2,3,4,5,6,7,8,9,10])
print (np.delete(a, np.s_[::2]))

import numpy as np

a = np.array([5,2,6,2,7,5,6,8,2,9])

print ('第一个数组:')
print (a)
print ('\n') print ('第一个数组的去重值:')
u = np.unique(a)
print (u)
print ('\n') print ('去重数组的索引数组:')
u,indices = np.unique(a, return_index = True)
print (indices)
print ('\n') print ('我们可以看到每个和原数组下标对应的数值:')
print (a)
print ('\n') print ('去重数组的下标:')
u,indices = np.unique(a,return_inverse = True)
print (u)
print ('\n') print ('下标为:')
print (indices)
print ('\n') print ('使用下标重构原数组:')
print (u[indices])
print ('\n') print ('返回去重元素的重复数量:')
u,indices = np.unique(a,return_counts = True)
print (u)
print (indices)

吴裕雄--天生自然Numpy库学习笔记:Numpy 数组操作的更多相关文章

  1. 吴裕雄--天生自然C++语言学习笔记:C++ 标准库

    C++ 标准库可以分为两部分: 标准函数库: 这个库是由通用的.独立的.不属于任何类的函数组成的.函数库继承自 C 语言. 面向对象类库: 这个库是类及其相关函数的集合. C++ 标准库包含了所有的 ...

  2. 吴裕雄--天生自然C++语言学习笔记:C++ STL 教程

    C++ STL(标准模板库)是一套功能强大的 C++ 模板类,提供了通用的模板类和函数,这些模板类和函数可以实现多种流行和常用的算法和数据结构,如向量.链表.队列.栈. C++ 标准模板库的核心包括以 ...

  3. 吴裕雄--天生自然C++语言学习笔记:C++ Web 编程

    什么是 CGI? 公共网关接口(CGI),是一套标准,定义了信息是如何在 Web 服务器和客户端脚本之间进行交换的. CGI 规范目前是由 NCSA 维护的,NCSA 定义 CGI 如下: 公共网关接 ...

  4. 吴裕雄--天生自然C++语言学习笔记:C++ 多线程

    多线程是多任务处理的一种特殊形式,多任务处理允许让电脑同时运行两个或两个以上的程序.一般情况下,两种类型的多任务处理:基于进程和基于线程. 基于进程的多任务处理是程序的并发执行. 基于线程的多任务处理 ...

  5. 吴裕雄--天生自然C++语言学习笔记:C++ 信号处理

    信号是由操作系统传给进程的中断,会提早终止一个程序.在 UNIX.LINUX.Mac OS X 或 Windows 系统上,可以通过按 Ctrl+C 产生中断. 有些信号不能被程序捕获,但是下表所列信 ...

  6. 吴裕雄--天生自然C++语言学习笔记:C++ 模板

    模板是泛型编程的基础,泛型编程即以一种独立于任何特定类型的方式编写代码. 模板是创建泛型类或函数的蓝图或公式.库容器,比如迭代器和算法,都是泛型编程的例子,它们都使用了模板的概念. 每个容器都有一个单 ...

  7. 吴裕雄--天生自然C++语言学习笔记:C++ 命名空间

    假设这样一种情况,当一个班上有两个名叫 Zara 的学生时,为了明确区分它们,在使用名字之外,不得不使用一些额外的信息,比如他们的家庭住址,或者他们父母的名字等等. 同样的情况也出现在 C++ 应用程 ...

  8. 吴裕雄--天生自然C++语言学习笔记:C++ 文件和流

    如何从文件读取流和向文件写入流.这就需要用到 C++ 中另一个标准库 fstream,它定义了三个新的数据类型: ofstream 该数据类型表示输出文件流,用于创建文件并向文件写入信息. ifstr ...

  9. 吴裕雄--天生自然C++语言学习笔记:C++ 数据抽象

    数据抽象是指,只向外界提供关键信息,并隐藏其后台的实现细节,即只表现必要的信息而不呈现细节. 数据抽象是一种依赖于接口和实现分离的编程(设计)技术. 它们向外界提供了大量用于操作对象数据的公共方法,也 ...

  10. 吴裕雄--天生自然C++语言学习笔记:C++ 日期 & 时间

    C++ 标准库没有提供所谓的日期类型.C++ 继承了 C 语言用于日期和时间操作的结构和函数.为了使用日期和时间相关的函数和结构,需要在 C++ 程序中引用 <ctime> 头文件. 有四 ...

随机推荐

  1. Flink流处理(一)- 状态流处理简介

    1. Flink 简介 Flink 是一个分布式流处理器,提供直观且易于使用的API,以供实现有状态的流处理应用.它能够以fault-tolerant的方式高效地运行在大规模系统中. 流处理技术在当今 ...

  2. zookeeper linux分布式部署

    安装包下载地址:http://mirror.bit.edu.cn/apache/zookeeper,记住要下载那个bin的不要下tar.gz包不然即使你安装了也会报错误: 找不到或无法加载主类org. ...

  3. code ELIFECYCLE 报错处理

    npm ERR! code ELIFECYCLEnpm ERR! errno 1npm ERR! m-kbs-vip@1.2.12 toserver: `tua -p toserver`npm ERR ...

  4. 吴裕雄 python 机器学习——数据预处理标准化MaxAbsScaler模型

    from sklearn.preprocessing import MaxAbsScaler #数据预处理标准化MaxAbsScaler模型 def test_MaxAbsScaler(): X=[[ ...

  5. 【音乐欣赏】《99》 - MOB CHOIR

    曲名:99 作者:MOB CHOIR [00:00.000] 作曲 : 佐々木淳一 [00:00.150] 作词 : 佐々木淳一 [00:00.450] [00:02.370]If everyone ...

  6. 每天进步一点点------如何实现Sobel Edge Detector? (Image Processing) (C/C++)

    使用C與C++/CLI實現Sobel Edge Detector. http://www.cnblogs.com/oomusou/archive/2008/07/23/sobel_edge_detec ...

  7. IIS-7.5 第一次加载慢的 解决办法

    问题焦点 Win2008R2,Win7 下面IIS部署的.NET站点第一次加载比较慢. 解决办法: 1.基本原理: 在第一个请求到达之前加载Web应用程序,从而提高其网站的响应性.通过主动加载和初始化 ...

  8. Mysql2docx自动生成数据库说明文档

    [需要python3.0以上] 首先安装Mysql2docx,如下: pip install Mysql2docx 然后打开pycharm,新建test.py # python from Mysql2 ...

  9. Requests库网络爬虫实战

    实例一:页面的爬取 >>> import requests>>> r= requests.get("https://item.jd.com/1000037 ...

  10. Linux04——手动修改IP和关闭防火墙服务

    两种方法手动修改IP: 命令行方式 2. 图形化界面修改 点击应用即可(地址自行设置) 关闭防火墙服务,否则连不上Linux