PROBLEM: OmniAnomaly

multivariate time series anomaly detection + unsupervised

主体思想: input: multivariate time series to RNN ------> capture the normal patterns -----> reconstruct input data by the representations ------> use the reconstruction probabilities to determine anomalies.

INTRODUCTION:

1. The first challenge is how to learn robust latent representations, considering both the temporal dependence and stochasticity of multivariate time series.

-------stochastic RNN + explicit temporal dependence among stochastic variables.

Stochastic variables are latent representations of input data and their quality is the key to model performance.

Their approach glues GRU and VAE with two key techniques:

  • stochastic variable connection technique: explicitly model temporal dependence among stochastic variables in the latent space.
  • Planar Normalizing Flows, which uses a series of invertible mappings可逆映射 to learn non-Gaussian posterior distributions in latent stochastic space.

2. The second challenge is how to provide interpretation to the detected entity-level anomalies, given the stochastic deep learning approaches.

Challenge: 1. capture long-term dependence. 2. capture probability distributions of multivariate time series. 3. how to interpret your results (unsupervised learning)

EVIDENCE: literature 5 shown that explicitly modeling the temporal dependence are better.

RELATED WORK:

PRELIMINARIES:

Problem statement: 以时序数据的个数作为维度,M个TS, x 属于R[M*N], x_t为一个M维的列向量,

gru, vae, and stochastic gradient variational bayes

DESIGN

OmniAnomaly structure: returns an anomaly score for x_t.

  • online detection
  • offline detection
    • data preprocessing: data standardization, sequence segmentation through sliding windows T+1;
    • input: multivariate time series inside a window, ----------Model training ------------output: an anomaly score for each observation ------- automatic threshold selection;

Detection: detect anomalies based on the reconstruction probability of x_t.

Loss function: ELBO;

Variational inference algorithms: SGVB;

Output: a univariate time series of anomaly scores

Automatic thresholds selection: extreme value theory + peaks-over-threshold;


1. use GRU to capture complex temporal dependence in x-space.

2. apply VAE to map observations to stochastic variables.

3. explicitly model temporal dependence among latent space, they propose the stochastic variable connection technique.

4. adopt planar NF.

Evaluation:

We use Precision, Recall, F1-Score (denoted as F1) to evaluate the performance of OmniAnomaly.

Baseline:

  1. LSTM with nonparametric dynamic thresholding
  2. EncDec-AD
  3. DAGMM
  4. LSTM-VAE
  5. Donut; 采取别的方式使donut适用于multivariate TS.

Supplementary knowledge:

1. VAE:

inference net qnet + generative net pnet.

2. GRU: gate recurrent unit

Reference

  1. 人人都能看懂的GRU
  2. 变分自编码器VAE:原来是这么一回事 | 附开源代码

PP: Robust Anomaly Detection for Multivariate Time Series through Stochastic Recurrent Neural Network的更多相关文章

  1. PP: Unsupervised anomaly detection via variational auto-encoder for seasonal KPIs in web applications

    Problem: unsupervised anomaly detection for seasonal KPIs in web applications. Donut: an unsupervise ...

  2. PP: A dual-stage attention-based recurrent neural network for time series prediction

    Problem: time series prediction The nonlinear autoregressive exogenous model: The Nonlinear autoregr ...

  3. "Regressing Robust and Discriminative 3D Morphable Models with a very Deep Neural Network" 解读

    简介:这是一篇17年的CVPR,作者提出使用现有的人脸识别深度神经网络Resnet101来得到一个具有鲁棒性的人脸模型. 原文链接:https://www.researchgate.net/publi ...

  4. Anomaly Detection for Time Series Data with Deep Learning——本质分类正常和异常的行为,对于检测异常行为,采用预测正常行为方式来做

    A sample network anomaly detection project Suppose we wanted to detect network anomalies with the un ...

  5. Machine Learning No.10: Anomaly detection

    1. Algorithm 2. evaluating an anomaly detection system 3. anomaly detection vs supervised learning 4 ...

  6. PP: Time series anomaly detection with variational autoencoders

    Problem: unsupervised anomaly detection Model: VAE-reEncoder VAE with two encoders and one decoder. ...

  7. Time Series Anomaly Detection

    这里有个2015年的综述文章,概括的比较好,各种技术的适用场景.  https://iwringer.wordpress.com/2015/11/17/anomaly-detection-concep ...

  8. PP: Deep r -th Root of Rank Supervised Joint Binary Embedding for Multivariate Time Series Retrieval

    from: Dacheng Tao 悉尼大学 PROBLEM: time series retrieval: given the current multivariate time series se ...

  9. PP: Toeplitz Inverse Covariance-Based Clustering of Multivariate Time Series Data

    From: Stanford University; Jure Leskovec, citation 6w+; Problem: subsequence clustering. Challenging ...

随机推荐

  1. 复杂系统架构设计<1>

    这两天开始读由Edward Crawley(爱德华 克劳利).Bruce Cameron(布鲁斯 卡梅隆).Daniel Selva(丹尼尔 塞尔瓦)著作的系统架构,一开始看目录以为是介绍系统软件架构 ...

  2. .net 用反射获取当前运行的程序集中的所有Controller与Action

    public string InitPermission() { // 通过反射加载程序集 // var baseType = Assembly.LoadFile(@"G:\testproj ...

  3. VUE中使用XLSX实现导出excel表格

    简介 项目中经常会用导出数据的场景,这里介绍 VUE 中如何使用插件 xlsx 导出数据 安装 ## 1.使用 npm 或 yarn 安装依赖(三个依赖) npm install -S file-sa ...

  4. beego框架之orm模块——mysql

    参考beego原文:http://beego.me/docs/mvc/model/orm.md#main.go beego ORM 是一个强大的 Go 语言 ORM 框架,orm模块主要是处理MVC中 ...

  5. win10下GO的环境配置

    目录 问题描述 环境变量配置 问题描述 win10 下配置 GO 语言的运行环境,主要是环境变量的设置 环境变量配置 在windows的PATH变量中添加go的可执行文件所在的目录: PATH=D:\ ...

  6. webstrom 2019 注册码(可用 2019年10月14日08:59:18)

    K6IXATEF43-eyJsaWNlbnNlSWQiOiJLNklYQVRFRjQzIiwibGljZW5zZWVOYW1lIjoi5o6I5p2D5Luj55CG5ZWGOiBodHRwOi8va ...

  7. idea中MavenWeb项目不能创建Servlet的解决办法

    问题 学习完maven后,用maven创建了一个web项目,然后在这个web项目中创建了一个java文件夹并标记这个目录为源码根目录,当我准备创建一个Servlet的时候发现没有,如下图 解决办法 1 ...

  8. 数据库 left()、length()函数

    数据库 left().length()函数 1.Mysql的length()函数: length()函数主要用于计算字符串的长度,用法也很简单:length(要计算的字符串) 就可以计算出字符串的长度 ...

  9. 覆盖的面积 HDU - 1255 线段树+扫描线+离散化 求特定交叉面积

    #include<cstdio> #include<map> #include<algorithm> using namespace std; ; struct N ...

  10. 安装Gitlab到Ubuntu(APT)

    运行环境 系统版本:Ubuntu 16.04.6 LTS 软件版本:Gitlab-ce-11.10.1 硬件要求:最低2核4GB,建议4核8GB 安装过程 1.安装依赖 root@localhost: ...