PP: Robust Anomaly Detection for Multivariate Time Series through Stochastic Recurrent Neural Network
PROBLEM: OmniAnomaly
multivariate time series anomaly detection + unsupervised
主体思想: input: multivariate time series to RNN ------> capture the normal patterns -----> reconstruct input data by the representations ------> use the reconstruction probabilities to determine anomalies.
INTRODUCTION:
1. The first challenge is how to learn robust latent representations, considering both the temporal dependence and stochasticity of multivariate time series.
-------stochastic RNN + explicit temporal dependence among stochastic variables.
Stochastic variables are latent representations of input data and their quality is the key to model performance.
Their approach glues GRU and VAE with two key techniques:
- stochastic variable connection technique: explicitly model temporal dependence among stochastic variables in the latent space.
- Planar Normalizing Flows, which uses a series of invertible mappings可逆映射 to learn non-Gaussian posterior distributions in latent stochastic space.
2. The second challenge is how to provide interpretation to the detected entity-level anomalies, given the stochastic deep learning approaches.
Challenge: 1. capture long-term dependence. 2. capture probability distributions of multivariate time series. 3. how to interpret your results (unsupervised learning)
EVIDENCE: literature 5 shown that explicitly modeling the temporal dependence are better.
RELATED WORK:
PRELIMINARIES:
Problem statement: 以时序数据的个数作为维度,M个TS, x 属于R[M*N], x_t为一个M维的列向量,
gru, vae, and stochastic gradient variational bayes
DESIGN
OmniAnomaly structure: returns an anomaly score for x_t.
- online detection
- offline detection
- data preprocessing: data standardization, sequence segmentation through sliding windows T+1;
- input: multivariate time series inside a window, ----------Model training ------------output: an anomaly score for each observation ------- automatic threshold selection;

Detection: detect anomalies based on the reconstruction probability of x_t.
Loss function: ELBO;
Variational inference algorithms: SGVB;
Output: a univariate time series of anomaly scores
Automatic thresholds selection: extreme value theory + peaks-over-threshold;
1. use GRU to capture complex temporal dependence in x-space.
2. apply VAE to map observations to stochastic variables.
3. explicitly model temporal dependence among latent space, they propose the stochastic variable connection technique.
4. adopt planar NF.
Evaluation:
We use Precision, Recall, F1-Score (denoted as F1) to evaluate the performance of OmniAnomaly.
Baseline:
- LSTM with nonparametric dynamic thresholding
- EncDec-AD
- DAGMM
- LSTM-VAE
- Donut; 采取别的方式使donut适用于multivariate TS.
Supplementary knowledge:
1. VAE:
inference net qnet + generative net pnet.
2. GRU: gate recurrent unit
Reference
PP: Robust Anomaly Detection for Multivariate Time Series through Stochastic Recurrent Neural Network的更多相关文章
- PP: Unsupervised anomaly detection via variational auto-encoder for seasonal KPIs in web applications
Problem: unsupervised anomaly detection for seasonal KPIs in web applications. Donut: an unsupervise ...
- PP: A dual-stage attention-based recurrent neural network for time series prediction
Problem: time series prediction The nonlinear autoregressive exogenous model: The Nonlinear autoregr ...
- "Regressing Robust and Discriminative 3D Morphable Models with a very Deep Neural Network" 解读
简介:这是一篇17年的CVPR,作者提出使用现有的人脸识别深度神经网络Resnet101来得到一个具有鲁棒性的人脸模型. 原文链接:https://www.researchgate.net/publi ...
- Anomaly Detection for Time Series Data with Deep Learning——本质分类正常和异常的行为,对于检测异常行为,采用预测正常行为方式来做
A sample network anomaly detection project Suppose we wanted to detect network anomalies with the un ...
- Machine Learning No.10: Anomaly detection
1. Algorithm 2. evaluating an anomaly detection system 3. anomaly detection vs supervised learning 4 ...
- PP: Time series anomaly detection with variational autoencoders
Problem: unsupervised anomaly detection Model: VAE-reEncoder VAE with two encoders and one decoder. ...
- Time Series Anomaly Detection
这里有个2015年的综述文章,概括的比较好,各种技术的适用场景. https://iwringer.wordpress.com/2015/11/17/anomaly-detection-concep ...
- PP: Deep r -th Root of Rank Supervised Joint Binary Embedding for Multivariate Time Series Retrieval
from: Dacheng Tao 悉尼大学 PROBLEM: time series retrieval: given the current multivariate time series se ...
- PP: Toeplitz Inverse Covariance-Based Clustering of Multivariate Time Series Data
From: Stanford University; Jure Leskovec, citation 6w+; Problem: subsequence clustering. Challenging ...
随机推荐
- 高性能异步SRAM技术角度
当前有两个不同系列的异步SRAM:快速SRAM(支持高速存取)和低功耗SRAM(低功耗).从技术角度看来,这种权衡是合理的.在低功耗SRAM中,通过采用特殊栅诱导漏极泄漏(GIDL)控制技术控制待机电 ...
- 【STM32H7教程】第46章 STM32H7的ADC应用之DMA方式多通道采样
完整教程下载地址:http://www.armbbs.cn/forum.php?mod=viewthread&tid=86980 第46章 STM32H7的ADC应用之DMA方式多 ...
- Umi 小白纪实(三)—— 震惊!路由竟然如此强大!
在<Umi 小白纪实(一)>中有提到过简单的路由配置和使用,但这只是冰山一角 借用一句广告词,Umi 路由的能量,超乎你的想象 一.基本用法 Umi 的路由根结点是全局 layout s ...
- VBA-FileToFileUpdate
Public Sub FileToFileUpdate(ByVal fileName As String, ByVal strFrm As String, ByVal strTo As String) ...
- vmware进程,虚拟机NAT模式配置固定ip,访问外网与ping通主机
vmware进程杀不掉 在使用vmware虚拟机时,如果强制结束vmware进程,可能会发现在资源监视器中有一个vmware-vmx.exe进程始终关不掉,获得管理员权限去杀或者重启都没有用,然后正常 ...
- 记录zabbix4.0升级4.2
系统环境 [root@localhost ~]# cat /etc/redhat-release CentOS release 6.9 (Final) 官方网站 官方文档升级其实很简单如果 ...
- Ubuntu 系统连接到服务器
Ubuntu 系统连接到服务器 我用的是 Ubuntu18.04 系统 假设你的服务器上的用户名是 root, 域名或者 ip 地址是 xyz 而且配置好了安全组(阿里云的)和云解析 首先要安装 op ...
- Android一个简单的自定义对话框制作
布局文件 <?xml version="1.0" encoding="utf-8"?> <TableLayout xmlns:android= ...
- Spring Boot源码(五):BeanFactoryPostProcessor和BeanPostProcessor
BeanFactoryPostProcessor是spring BeanFactory加载Bean后调用, BeanPostProcessor是Bean初始化前后调用. BeanFactoryPost ...
- P1478 陶陶摘苹果(升级版)(sort(),时间优化,priority_queue)
题目描述 又是一年秋季时,陶陶家的苹果树结了 n 个果子.陶陶又跑去摘苹果,这次他有一个 a 公分的椅子.当他手够不着时,他会站到椅子上再试试. 这次与 NOIp2005 普及组第一题不同的是:陶陶之 ...