COGS2356 【HZOI2015】有标号的DAG计数 IV
题面
题目描述
给定一正整数n,对n个点有标号的有向无环图进行计数。
这里加一个限制:此图必须是弱连通图。
输出答案mod 998244353的结果
输入格式
一个正整数n。
输出格式
一个数,表示答案。
样例输入
3
样例输出
18
提示
对于第i个点 1<=n<=10000i。
题目分析
综合COGS2355 【HZOI 2015】 有标号的DAG计数 II与【2013集训胡渊鸣】城市规划。
\(f(i)\)用前一题的方法求出,用后一题的方法推出\(g(i)\)即为答案。
代码实现
#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdio>
#include<iomanip>
#include<cstdlib>
#define MAXN 0x7fffffff
typedef long long LL;
const int N=400005,mod=998244353,qr2=116195171;
using namespace std;
inline int Getint(){register int x=0,f=1;register char ch=getchar();while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}return x*f;}
int ksm(int x,int k){
int ret=1;
while(k){
if(k&1)ret=(LL)ret*x%mod;
x=(LL)x*x%mod;
k>>=1;
}
return ret;
}
void Der(int *f,int *g,int len){
for(int i=0;i<len;i++)g[i]=(LL)f[i+1]*(i+1)%mod;
g[len-1]=0;
}
void Int(int *f,int *g,int len){
for(int i=1;i<len;i++)g[i]=(LL)f[i-1]*ksm(i,mod-2)%mod;
g[0]=0;
}
void NTT(int *a,int x,int K){
static int rev[N],lst;
int n=(1<<x);
if(n!=lst){
for(int i=0;i<n;i++)rev[i]=(rev[i>>1]>>1)|((i&1)<<x-1);
lst=n;
}
for(int i=0;i<n;i++)if(i<rev[i])swap(a[i],a[rev[i]]);
for(int i=1;i<n;i<<=1){
int tmp=i<<1,wn=ksm(3,(mod-1)/tmp);
if(K==-1)wn=ksm(wn,mod-2);
for(int j=0;j<n;j+=tmp){
int w=1;
for(int k=0;k<i;k++,w=(LL)w*wn%mod){
int x=a[j+k],y=(LL)w*a[i+j+k]%mod;
a[j+k]=(x+y)%mod;a[i+j+k]=(x-y+mod)%mod;
}
}
}
if(K==-1){
int inv=ksm(n,mod-2);
for(int i=0;i<n;i++)a[i]=(LL)a[i]*inv%mod;
}
}
void Inv(int *f,int *g,int len){
static int A[N];
if(len==1)return g[0]=ksm(f[0],mod-2),void();
Inv(f,g,len>>1),copy(f,f+len,A);
int x=log2(len<<1),n=1<<x;
fill(A+len,A+n,0),fill(g+(len>>1),g+n,0);
NTT(A,x,1),NTT(g,x,1);
for(int i=0;i<n;i++)g[i]=(mod+2-(LL)A[i]*g[i]%mod)*g[i]%mod;
NTT(g,x,-1),fill(g+len,g+n,0);
}
void Ln(int *f,int *g,int len){
static int A[N],B[N];
Der(f,A,len),Inv(f,B,len);
int x=log2(len<<1),n=1<<x;
fill(A+len,A+n,0),fill(B+len,B+n,0);
NTT(A,x,1),NTT(B,x,1);
for(int i=0;i<n;i++)A[i]=(LL)A[i]*B[i]%mod;
NTT(A,x,-1),Int(A,g,len);
}
int a[N],b[N],fac[N];
int main(){
freopen("dagIV.in","r",stdin);
freopen("dagIV.out","w",stdout);
int n=Getint(),x=ceil(log2(n+1));
fac[0]=1;
for(int i=1;i<(1<<x);i++)fac[i]=(LL)fac[i-1]*i%mod;
a[0]=1;
for(int i=1;i<(1<<x);i++)
a[i]=(((i&1)?-1:1)*(LL)ksm(fac[i],mod-2)%mod*ksm(ksm(qr2,(LL)i*i%(mod-1)),mod-2)%mod+mod)%mod;
Inv(a,b,1<<x);
for(int i=1;i<(1<<x);i++)b[i]=(LL)b[i]*ksm(qr2,(LL)i*i%(mod-1))%mod;
Ln(b,a,1<<x);
cout<<(LL)a[n]*fac[n]%mod;
return 0;
}
COGS2356 【HZOI2015】有标号的DAG计数 IV的更多相关文章
- 有标号的DAG计数(FFT)
有标号的DAG计数系列 有标号的DAG计数I 题意 给定一正整数\(n\),对\(n\)个点有标号的有向无环图(可以不连通)进行计数,输出答案\(mod \ 10007\)的结果.\(n\le 500 ...
- 【题解】有标号的DAG计数4
[HZOI 2015] 有标号的DAG计数 IV 我们已经知道了\(f_i\)表示不一定需要联通的\(i\)节点的dag方案,考虑合并 参考[题解]P4841 城市规划(指数型母函数+多项式Ln),然 ...
- COGS2355 【HZOI2015】 有标号的DAG计数 II
题面 题目描述 给定一正整数n,对n个点有标号的有向无环图(可以不连通)进行计数,输出答案mod 998244353的结果 输入格式 一个正整数n 输出格式 一个数,表示答案 样例输入 3 样例输出 ...
- 【题解】有标号的DAG计数3
[HZOI 2015] 有标号的DAG计数 III 我们已经知道了\(f_i\)表示不一定需要联通的\(i\)节点的dag方案,考虑合并 参考[题解]P4841 城市规划(指数型母函数+多项式Ln), ...
- 【题解】有标号的DAG计数2
[HZOI 2015] 有标号的DAG计数 II \(I\)中DP只有一个数组, \[ dp_i=\sum{i\choose j}2^{j(i-j)}dp_{i-j}(-1)^{j+1} \] 不会. ...
- 【题解】有标号的DAG计数1
[HZOI 2015] 有标号的DAG计数 I 设\(f_i\)为\(i\)个点时的DAG图,(不必联通) 考虑如何转移,由于一个DAG必然有至少一个出度为\(0\)的点,所以我们钦定多少个出度为\( ...
- COGS 2353 2355 2356 2358 有标号的DAG计数
不用连通 枚举入度为0的一层 卷积 发现有式子: 由$n^2-i^2-(n-i)^2=2*i*(n-i)$ 可得$2^{i*(n-i)}=\frac{{\sqrt 2}^{(n^2)}}{{\sqrt ...
- COGS2353 【HZOI2015】有标号的DAG计数 I
题面 题目描述 给定一正整数n,对n个点有标号的有向无环图(可以不连通)进行计数,输出答案mod 10007的结果 输入格式 一个正整数n 输出格式 一个数,表示答案 样例输入 3 样例输出 25 提 ...
- 有标号的DAG计数I~IV
题解: https://www.cnblogs.com/zhoushuyu/p/10077241.html 看到这么一篇,发现挺不错的..
随机推荐
- redis 部署方式及常见特性
单机部署 redis的单机部署 如何保证redis的高并发和高可用? redis的主从复制原理?redis的哨兵原理? redis单机能承载多高并发?如果单机扛不住如何扩容扛更多的并发? redis会 ...
- python语言和R语言实现机器学习算法
<转>机器学习系列(9)_机器学习算法一览(附Python和R代码) 转自http://blog.csdn.net/han_xiaoyang/article/details/51191 ...
- SSD 坏了
系统盘是SSD,系统盘坏了. 桌面所有数据都拿不回来了. 真的无奈啊,来吧,统计一下,有多少东西要重装. VS2008.VS2010.VS2013.VS2015. GITHUB.SVN.VMWare. ...
- Oracle数据库与MySQL的不同点
Oracle笔记 一. Oracle的启动和登录: 1.启动:通过启动Oracle的服务启动. OracleServiceORCL:核心服务,必须启动. OracleOraDb11g_home1 ...
- FTPClient登录慢的问题
java上传文件到ftp上,发现特别慢,debug了一下发现链接正常,ftp.login(username, password)这个登录方法特别慢 解决方案: vi /etc/vsftpd/vsftp ...
- 完美编译街机模拟器MAME(Android版)基于MAME4all
重新编译MAME4droid源码 github上开源项目MAME4all可将MAME模拟器运行在iOS和Android上,还有一个比较有名的叫MAME4droid(MAME for android), ...
- cdn 的配置及原理
CDN概况 CDN的全称是Content Delivery Network,即内容分发网络. CND加速主要是加速静态资源,如网站上面上传的图片.媒体,以及引入的一些Js.css等文件. CND加速需 ...
- PHP算法之最长公共前缀
### 解题思路 方法太笨重后期优化 循环比较 循环长度利用max(最长字符串的循环) 不满住条件的截取 ### 代码 ```php class Solution { /** * @ ...
- java zxing 生成条形码和二维吗
依赖 <dependency> <groupId>com.google.zxing</groupId> <artifactId>core</art ...
- magento 跳转
Magento: Redirect functions 原文:http://blog.chapagain.com.np/magento-redirect-functions/ The redirect ...