CF696B Puzzles(期望dp)
解题思路
比较有意思的一道题。首先假如这个点\(x\)只有\(1\)个儿子\(u\),那么显然可得\(dp[u]=dp[x]+1\)。继续如果多加一个儿子\(p\),那么\(p\)在\(u\)前面的概率就是\(1/2\),也就是说\(p\)对于\(u\)的答案有\(1/2\)的可能产生贡献,而产生的贡献为\(siz[p]\),那么继续归纳下去,就可以得出转移方程。\(dp[u]=dp[x]+1+(siz[x]-siz[u]-1)/2\)。
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
const int MAXN = 100005;
inline int rd(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)) {f=ch=='-'?0:1;ch=getchar();}
while(isdigit(ch)) {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return f?x:-x;
}
int n,head[MAXN],cnt,to[MAXN],nxt[MAXN],siz[MAXN];
double ans[MAXN];
inline void add(int bg,int ed){
to[++cnt]=ed,nxt[cnt]=head[bg],head[bg]=cnt;
}
void dfs1(int x){
int u;siz[x]=1;
for(int i=head[x];i;i=nxt[i]){
u=to[i];dfs1(u);
siz[x]+=siz[u];
}
}
void dfs2(int x){
int u;
for(int i=head[x];i;i=nxt[i]){
u=to[i];ans[u]=ans[x]+1+(double)(siz[x]-siz[u]-1)/2;
dfs2(u);
}
}
int main(){
n=rd();int x;
for(int i=2;i<=n;i++)
x=rd(),add(x,i);
ans[1]=1.0;dfs1(1);dfs2(1);
for(int i=1;i<=n;i++) printf("%.8lf ",ans[i]);
return 0;
}
CF696B Puzzles(期望dp)的更多相关文章
- CF696B Puzzles 期望
显然可以树形$dp$ 令$f[i]$表示$i$号节点的期望时间戳 不妨设$fa$有$k$个子节点,对于$i$的子节点$u$,它是第$j(1 \leqslant j \leqslant k)$个被访问的 ...
- [CF697D]Puzzles 树形dp/期望dp
Problem Puzzles 题目大意 给一棵树,dfs时随机等概率选择走子树,求期望时间戳. Solution 一个非常简单的树形dp?期望dp.推导出来转移式就非常简单了. 在经过分析以后,我们 ...
- 【BZOJ-1419】Red is good 概率期望DP
1419: Red is good Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 660 Solved: 257[Submit][Status][Di ...
- [NOIP2016]换教室 D1 T3 Floyed+期望DP
[NOIP2016]换教室 D1 T3 Description 对于刚上大学的牛牛来说, 他面临的第一个问题是如何根据实际情况中情合适的课程. 在可以选择的课程中,有2n节课程安排在n个时间段上.在第 ...
- HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)
题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...
- 【BZOJ-4008】亚瑟王 概率与期望 + DP
4008: [HNOI2015]亚瑟王 Time Limit: 20 Sec Memory Limit: 512 MBSec Special JudgeSubmit: 832 Solved: 5 ...
- 期望dp BZOJ3450+BZOJ4318
BZOJ3450 概率期望DP f[i]表示到i的期望得分,g[i]表示到i的期望长度. 分三种情况转移: ① s[i]=‘x’:f[i]=f[i-1],g[i]=0 ② s[i]=‘o’:f[i]= ...
- HDU 4405 期望DP
期望DP算是第一题吧...虽然巨水但把思路理理清楚总是好的.. 题意:在一个1×n的格子上掷色子,从0点出发,掷了多少前进几步,同时有些格点直接相连,即若a,b相连,当落到a点时直接飞向b点.求走到n ...
- POJ 2096 【期望DP】
题意: 有n种选择,每种选择对应m种状态.每种选择发生的概率相等,每种选择中对应的每种状态发生的概率相等. 求n种选择和m种状态中每种至少发生一次的期望. 期望DP好别扭啊.要用倒推的方法. dp[i ...
随机推荐
- 2、Python 接口框架
common:存放通用的工具类 config:存放配置文件信息 result:存放result.html run_suite.py:最后执行的文件 1.excel_util:利用 openpyxl 进 ...
- 【leetcode】965. Univalued Binary Tree
题目如下: A binary tree is univalued if every node in the tree has the same value. Return true if and on ...
- Unity HOME
{ https://unity.com/cn?_ga=2.134655153.1528856053.1574826116-818341090.1574826116 }
- tomcat 安装时出现 Failed to install Tomcat7 service
今天在安装tomcat时提示 Failed to install Tomcat7 service了,花了大半天的时间找到了原因,下面分享给大家,希望对各位有所帮助. 应该是你卸载时直接删除目录导致的. ...
- Java——类的成员之五:内部类
3.6 类的成员之五:内部类 3.6.1 静态内部类 ①静态内部类可以等同看做静态变量. ②内部类重要的作用:可以访问外部类中私有的数据. ③静态内部类可以直接访问外部类的静态数据,无法直接访问成员. ...
- JZOJ4605. 排序(线段树合并与分裂)
题目大意: 每次把一个区间升序或降序排序,最后问一个点是什么. 题解: 如果只是问一个点,这确乎是个经典题,二分一下答案然后线段树维护01排序. 从pty那里get到了可以用线段树的合并与分裂实时地维 ...
- APICloud框架——获取本地图片信息
api.getPicture 获取本地图片放置到服务器上或者在app中预览是app的基本功能,今天使用了APICloud框架的api.getPicture这个api获取到的本地图片预览在app中,就像 ...
- 高级运维(二):搭建Nginx服务器、用户认证、基于域名的虚拟主机、SSL虚拟主机、Nginx反向代理
一.搭建Nginx服务器 目标: 在IP地址为192.168.4.5的主机上安装部署Nginx服务,并可以将Nginx服务器,要求编译时启用如下功能: 1> SSL加密功能 2> 设置Ng ...
- CF D. Walking Between Houses (贪心)
题意: 现在有n个房子排成一列,编号为1~n,起初你在第1个房子里,现在你要进行k次移动,每次移动一都可以从一个房子i移动到另外一个其他的房子j里(i != j),移动的距离为|j - i|.问你进过 ...
- Dubbo入门到精通学习笔记(四):持续集成管理平台之Maven私有库和本地库的安装与配置
文章目录 介绍 Maven私有库和本地库的安装与配置 Nexus安装 Nexus 配置(登录后) 介绍 如果构建的Maven项目本地仓库没有对应的依赖包,那么就会去Nexus私服去下载, 那么如果Ne ...