非常好的一道图论问题.

显然,我们要求城市间的最小生成树,然后查询路径最大值.

然后我们有一个非常神的处理方法:进行多源 BFS,处理出每一个城市的管辖范围.

显然,如果两个城市的管辖范围没有交集的话连边一定不是优秀的(一定会有一种都在管辖范围之内的连边方式来代替这种连边方式)

然后由于每一个点只属于一个城市的管辖范围,所以每个点只会扩展一次,这个 BFS 的复杂度是线性的.

code:

#include <bits/stdc++.h>
#define N 2006
#define M 200005
#define ll long long
using namespace std;
namespace IO {
void setIO(string s) {
string in=s+".in";
string out=s+".out";
freopen(in.c_str(),"r",stdin);
// freopen(out.c_str(),"w",stdout);
}
};
char str[N];
int n,m,P,Q,edges;
int dep[M];
int hd[M],to[M<<1],nex[M<<1],val[M<<1],vis[M],fa[18][M],Max[18][M];
int wall[N][N],id[N][N],dis[N][N],bel[N][N],p[N*N];
int dx[]={-1,0,1,0};
int dy[]={0,1,0,-1};
struct node {
int x,y;
node(int x=0,int y=0):x(x),y(y){}
};
struct edge {
int x,y;
edge(int x=0,int y=0):x(x),y(y){}
};
queue<node>q;
vector<edge>G[N*N];
void add(int u,int v,int c) {
nex[++edges]=hd[u],hd[u]=edges,to[edges]=v,val[edges]=c;
}
void init() {
for(int i=0;i<N*N;++i) p[i]=i;
}
int find(int x) {
return p[x]==x?x:p[x]=find(p[x]);
}
int merge(int x,int y) {
x=find(x);
y=find(y);
if(x==y)
return 0;
p[x]=y;
return 1;
}
void dfs(int x,int ff) {
vis[x]=1;
fa[0][x]=ff;
dep[x]=dep[ff]+1;
for(int i=1;i<18;++i)
fa[i][x]=fa[i-1][fa[i-1][x]];
for(int i=1;i<18;++i)
Max[i][x]=max(Max[i-1][fa[i-1][x]],Max[i-1][x]);
for(int i=hd[x];i;i=nex[i]) {
int v=to[i];
if(v!=ff)
Max[0][v]=val[i],dfs(v,x);
}
}
int query(int x,int y) {
int ma=0,i,j;
if(dep[x]!=dep[y]) {
if(dep[y]<dep[x]) swap(x,y);
for(i=17;i>=0;--i) {
if(dep[fa[i][y]]>=dep[x]) {
ma=max(ma,Max[i][y]);
y=fa[i][y];
}
}
}
if(x==y) return ma;
for(i=17;i>=0;--i) {
if(fa[i][y]!=fa[i][x]) {
ma=max(ma,max(Max[i][y],Max[i][x]));
x=fa[i][x],y=fa[i][y];
}
}
return max(ma,max(Max[0][y],Max[0][x]));
}
int main() {
// IO::setIO("input");
int i,j,idx=0;
scanf("%d%d%d%d",&n,&m,&P,&Q);
for(i=1;i<=n;++i) {
scanf("%s",str+1);
for(j=1;j<=m;++j) {
id[i][j]=++idx;
wall[i][j]=(str[j]=='#');
}
}
for(i=1;i<=P;++i) {
int x,y;
scanf("%d%d",&x,&y);
bel[x][y]=i;
q.push(node(x,y));
}
while(!q.empty()) {
node e=q.front(); q.pop();
int x=e.x,y=e.y;
for(i=0;i<4;++i) {
int X=x+dx[i],Y=y+dy[i];
if(id[X][Y]&&!wall[X][Y]) {
if(!bel[X][Y]) {
bel[X][Y]=bel[x][y];
dis[X][Y]=dis[x][y]+1;
q.push(node(X,Y));
}
else if(bel[X][Y]!=bel[x][y]){
G[dis[X][Y]+dis[x][y]].push_back(edge(bel[X][Y],bel[x][y]));
}
}
}
}
init();
for(i=0;i<N*N;++i) {
for(j=0;j<G[i].size();++j) {
int u=G[i][j].x,v=G[i][j].y;
if(merge(u,v)) {
add(u,v,i);
add(v,u,i);
}
}
}
for(i=1;i<=P;++i) {
if(!vis[i]) {
dfs(i,0);
}
}
for(i=1;i<=Q;++i) {
int x,y;
scanf("%d%d",&x,&y);
if(find(x)!=find(y))
printf("-1\n");
else
printf("%d\n",query(x,y));
}
return 0;
}

  

LOJ #2876. 「JOISC 2014 Day2」水壶 BFS+最小生成树+倍增LCA的更多相关文章

  1. [LOJ#2878]. 「JOISC 2014 Day2」邮戳拉力赛[括号序列dp]

    题意 题目链接 分析 如果走到了下行车站就一定会在前面的某个车站走回上行车站,可以看成是一对括号. 我们要求的就是 类似 代价最小的括号序列匹配问题,定义 f(i,j) 表示到 i 有 j 个左括号没 ...

  2. LOJ #2877. 「JOISC 2014 Day2」交朋友 并查集+BFS

    这种图论问题都挺考验小思维的. 首先,我们把从 $x$ 连出去两条边的都合并了. 然后再去合并从 $x$ 连出去一条原有边与一条新边的情况. 第一种情况直接枚举就行,第二种情况来一个多源 bfs 即可 ...

  3. 【bzoj4242】水壶 BFS+最小生成树+倍增LCA

    题目描述 JOI君所居住的IOI市以一年四季都十分炎热著称. IOI市是一个被分成纵H*横W块区域的长方形,每个区域都是建筑物.原野.墙壁之一.建筑物的区域有P个,编号为1...P. JOI君只能进入 ...

  4. bzoj4244 & loj2878. 「JOISC 2014 Day2」邮戳拉力赛 括号序列+背包

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4244 https://loj.ac/problem/2878 题解 挺妙的一道题. 一开始一直 ...

  5. LOJ#2882. 「JOISC 2014 Day4」两个人的星座(计算几何)

    题面 传送门 题解 我们发现如果两个三角形相离,那么这两个三角形一定存在两条公切线 那么我们可以\(O(n^2)\)枚举其中一条公切线,然后可以暴力\(O(n^3)\)计算 怎么优化呢?我们可以枚举一 ...

  6. 【LOJ】#3034. 「JOISC 2019 Day2」两道料理

    LOJ#3034. 「JOISC 2019 Day2」两道料理 找出最大的\(y_{i}\)使得\(sumA_{i} + sumB_{y_i} \leq S_{i}\) 和最大的\(x_{j}\)使得 ...

  7. 【LOJ】#3033. 「JOISC 2019 Day2」两个天线

    LOJ#3033. 「JOISC 2019 Day2」两个天线 用后面的天线更新前面的天线,线段树上存历史版本的最大值 也就是线段树需要维护历史版本的最大值,后面的天线的标记中最大的那个和最小的那个, ...

  8. 「JOISC 2014 Day1」巴士走读

    「JOISC 2014 Day1」巴士走读 将询问离线下来. 从终点出发到起点. 由于在每个点(除了终点)的时间被过来的边固定,因此如果一个点不被新的边更新,是不会发生变化的. 因此可以按照时间顺序, ...

  9. 「JOISC 2014 Day1」 历史研究

    「JOISC 2014 Day1」 历史研究 Solution 子任务2 暴力,用\(cnt\)记录每种权值出现次数. 子任务3 这不是一个尺取吗... 然后用multiset维护当前的区间,动态加, ...

随机推荐

  1. 2018icpc南京现场赛-G Pyramid(打标找规律+逆元)

    题意: 求n行三角形中等边三角形个数,图二的三角形也算. n<=1e9 思路: 打表找下规律,打表方法:把所有点扔坐标系里n^3爆搜即可 打出来为 1,5,15,35,70,126,210.. ...

  2. CyclicBarrier与CountDownLatch区别

    阻塞与唤醒方式的区别 CountDownLatch计数方式 CountDownLatch是减计数.调用await()后线程阻塞.调用countDown()方法后计数减一,当计数为零时,调用await( ...

  3. VFP控制Excel操作集

    ◆访问EXCEL:ExcelSheet = GetObject('','Excel.Sheet')返回结果为类,则成功.例:ExcelSheet = GetObject('','Excel.Sheet ...

  4. ELK日志分析平台

    ELK日志分析平台 ELK(1):  ELK-简介 ELK(2):  ELK-安装环境和安装包 ELK(3):  ELK-安装elasticsearch ELK(4):  ELK-安装logstash ...

  5. JS水仙花数

    题目:3位数==个位立方+十位的立方+百位的立方.这个3位数就是水仙花数.要求打印出所有的水仙花数 <body> <div id=d1> </div> <sc ...

  6. [译]Android Studio 3.6 新特性概览

    设计 设计编辑器 设计编辑器(比如布局编辑器和导航编辑器)现在提供了一个拆分视图模式,能够同时查看 UI 界面的 Design 视图和 Code 视图.拆分视图取代并改进了早期的预览窗口,并且可以对每 ...

  7. webapi+Quartz.NET解决若干定时程序同时运行的问题

    项目现状: 有若干定时程序需要自启动运行,为了简便程序部署等问题,采取这种办法把定时程序集中管理到webapi中跟随api发布 代码架构介绍: 新建一个类库,类库引用Quartz(Quartz.2.3 ...

  8. C#设计模式学习笔记:(11)享元模式

    本笔记摘抄自:https://www.cnblogs.com/PatrickLiu/p/7792973.html,记录一下学习过程以备后续查用. 一.引言 今天我们要讲结构型设计模式的第六个模式--享 ...

  9. HUE下载HDFS文件时报ERR_CONNECTION_TIMED_OUT错误的解决办法

    1.故障描述 这是运行在公有云上的一套Hadoop集群,有一个公网IP将部分服务的端口映射出来供办公室访问. 数据分析师报告说:在HUE上面浏览HDFS文件,点击"download" ...

  10. Kong Gateway - 11 基于网关服务的ACL访问控制列表 黑名单

    Kong Gateway - 11 基于网关服务的ACL访问控制列表 黑名单 同一服务名称 book 不允许即创建白名单访问控制列表又创建黑名单访问控制列表 启用服务的白名单&黑名单配置文件时 ...