uoj21 【UR #1】缩进优化
题意简介明了,需要找到一个\(T\),最小化
\]
非常显然的\(a_i\%T=a_i-\left \lfloor \frac{a_i}{T} \right \rfloor\times T\)
于是
\]
即为
\]
最小化这个柿子只需要最大化\((T-1)\sum_{i=1}^n\left \lfloor \frac{a_i}{T} \right \rfloor\)
考虑一次枚举\(T\),需要快速求出\(\sum_{i=1}^n\left \lfloor \frac{a_i}{T} \right \rfloor\)
注意到\(\left \lfloor \frac{a_i}{T} \right \rfloor\)只会有\(\left \lfloor \frac{\max a_i}{T} \right \rfloor\)种值,即对于\(a_i\in[0,T-1],\left \lfloor \frac{a_i}{T} \right \rfloor=0...a_i\in [kT-T,kT-1],\left \lfloor \frac{a_i}{T} \right \rfloor=k\)
我们直接暴力这\(\left \lfloor \frac{\max a_i}{T} \right \rfloor\)段区间,前缀和算一下这段区间里有多少个\(a_i\)即可
复杂度显然调和级数,视\(n\)与\(\max a_i\)同级,复杂度为\(O(n\log n)\)
代码
#include<bits/stdc++.h>
#define re register
#define LL long long
#define max(a,b) ((a)>(b)?(a):(b))
const int maxn=1e6+5;
inline int read() {
char c=getchar();int x=0;while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
}
int n,pre[maxn],T;LL ans,tmp;
inline int calc(int l,int r) {
return (r>T?pre[T]:pre[r])-(l?pre[l-1]:0);
}
int main() {
n=read();
for(re int x,i=1;i<=n;i++) x=read(),ans+=x,T=max(T,x),pre[x]++;
for(re int i=1;i<=T;i++) pre[i]+=pre[i-1];
for(re int i=2;i<=T;++i) {
LL now=0;
for(re int cnt=0,l=0,j=i-1;l<=T;j+=i,l+=i,++cnt)
now+=1ll*calc(l,j)*cnt;
if(1ll*now*(i-1)>tmp) tmp=1ll*now*(i-1);
}
printf("%lld\n",ans-tmp);
return 0;
}
uoj21 【UR #1】缩进优化的更多相关文章
- 【uoj#21】[UR #1]缩进优化 数学
题目描述 给出 $n$ 个数 ,求 $\text{Min}_{x=1}^{\infty}\sum\limits_{i=1}^n(\lfloor\frac {a_i}x\rfloor+a_i\ \tex ...
- UOJ_21_【UR #1】缩进优化_数学
UOJ_21_[UR #1]缩进优化_数学 题面:http://uoj.ac/problem/21 最小化$\sum\limits{i=1}^{n}a[i]/x+a[i]\;mod\;x$ =$\su ...
- 【UOJ#21】【UR#1】缩进优化
我好弱啊,什么题都做不出来QAQ 原题: 小O是一个热爱短代码的选手.在缩代码方面,他是一位身经百战的老手.世界各地的OJ上,很多题的最短解答排行榜都有他的身影.这令他感到十分愉悦. 最近,他突然发现 ...
- UOJ#21 【UR #1】缩进优化
传送门 http://uoj.ac/problem/21 枚举 (调和级数?) $\sum_{i=1}^{n} (a_i / x + a_i \bmod x) =\sum a_i - (\sum_{i ...
- uoj21 缩进优化(整除分块,乱搞)
题目大意: 给定一个长度为\(n\)的序列 让你找一个\(x\),使得\(ans\)尽可能小 其中$$ans=\sum_{i=1}^{n}\lfloor\frac{a_i}{x}\rfloor + \ ...
- uoj problem 21 缩进优化
题目: 小O是一个热爱短代码的选手.在缩代码方面,他是一位身经百战的老手.世界各地的OJ上,很多题的最短解答排行榜都有他的身影.这令他感到十分愉悦. 最近,他突然发现,很多时候自己的程序明明看起来比别 ...
- ●UOJ 21 缩进优化
题链: http://uoj.ac/problem/21 题解: ...技巧题吧 先看看题目让求什么: 令$F(x)=\sum_{i=1}^{n}(\lfloor a[i]/x \rfloor +a[ ...
- UOJ 做题记录
UOJ 做题记录 其实我这么弱> >根本不会做题呢> > #21. [UR #1]缩进优化 其实想想还是一道非常丝播的题目呢> > 直接对于每个缩进长度统计一遍就好 ...
- UOJ Round #1 [数论 | DP 排列]
UOJ Round #1 难度很良心啊! 做出了前两题,第三题看到仙人掌就吓哭了. [UR #1]缩进优化 就是求 \[ \sum_{i=1}^n a_i - (x-1)\sum_{i=1}^n\lf ...
随机推荐
- Dubbo入门到精通学习笔记(四):持续集成管理平台之Maven私有库和本地库的安装与配置
文章目录 介绍 Maven私有库和本地库的安装与配置 Nexus安装 Nexus 配置(登录后) 介绍 如果构建的Maven项目本地仓库没有对应的依赖包,那么就会去Nexus私服去下载, 那么如果Ne ...
- HDU 1700 Points on Cycle (坐标旋转)
题目链接:HDU 1700 Problem Description There is a cycle with its center on the origin. Now give you a poi ...
- 第二记 Java数据类型
一.数据类型 java中数据类型分为基本数据与引用数据类型两大类,其中又有更细致的划分,下面以图展示 二.基本数据类型封装类 Java是一门面向对象的语言,但是在一些情况下基本数据类型无法满足Java ...
- C# WinfForm 控件之dev报表 XtraReport(三) 动态数据绑定
代码还用上一节的,把reportFrx的dataSource去掉.各cell绑定的字段也去掉,有了第二节的基础,现在看这个ms就不难了 无非就是 传到reportFrx一个数据集 在把这个数据集 绑到 ...
- ArrayList底层代码解析笔记
通过底层代码可以学习到很多东西: public class ArrayList<E> extends AbstractList<E> implements List<E& ...
- (数据科学学习手札61)xpath进阶用法
一.简介 xpath作为对网页.对xml文件进行定位的工具,速度快,语法简洁明了,在网络爬虫解析内容的过程中起到很大的作用,除了xpath的基础用法之外(可参考我之前写的(数据科学学习手札50)基于P ...
- Unicode - 16 位统一超级字符集
描述 (DESCRIPTION) 国际标准 ISO 10646 定义了 通用字符集 (Universal Character Set, UCS). UCS 包含所有别的字符集标准里的字符,并且保证了 ...
- 记录一次工作中jvm被linux杀死的调查
首先,以后碰到任何jvm的错误,先看日志!!!!!!!! web项目在tomcat目录下的log里,或者自己设定的errorfile目录下.总之,找到一切可以运用的日志,比如crash日志,cored ...
- easyui datagrid 绑定json对象属性的属性
今天用easyui 的datagrid绑定数据时,后台提供的数据是实体类类型的,其中有一个实体类A的属性b是另一个实体类B类型的,而前台需要显示b的属性c,这下就悲剧了,前台没法直接绑定了,后来脑筋一 ...
- 【Bootstrap】 框架 栅格布局系统设计原理
前提条件(Bootstrap 自带) 首先使用这个布局之前要定义一下代码: 这行代码如果不懂,可以搜索一下,总之大致意思就是,被定义的元素的内边距和边框不再会增加它的宽度,不加入的话排版会有问题. 不 ...