题目

题意简介明了,需要找到一个\(T\),最小化

\[\sum_{i=1}^n\left \lfloor \frac{a_i}{T} \right \rfloor+\sum_{i=1}^na_i\%T
\]

非常显然的\(a_i\%T=a_i-\left \lfloor \frac{a_i}{T} \right \rfloor\times T\)

于是

\[\sum_{i=1}^n\left \lfloor \frac{a_i}{T} \right \rfloor+\sum_{i=1}^na_i-T\times \sum_{i=1}^n\left \lfloor \frac{a_i}{T} \right \rfloor
\]

即为

\[\sum_{i=1}^na_i-(T-1)\sum_{i=1}^n\left \lfloor \frac{a_i}{T} \right \rfloor
\]

最小化这个柿子只需要最大化\((T-1)\sum_{i=1}^n\left \lfloor \frac{a_i}{T} \right \rfloor\)

考虑一次枚举\(T\),需要快速求出\(\sum_{i=1}^n\left \lfloor \frac{a_i}{T} \right \rfloor\)

注意到\(\left \lfloor \frac{a_i}{T} \right \rfloor\)只会有\(\left \lfloor \frac{\max a_i}{T} \right \rfloor\)种值,即对于\(a_i\in[0,T-1],\left \lfloor \frac{a_i}{T} \right \rfloor=0...a_i\in [kT-T,kT-1],\left \lfloor \frac{a_i}{T} \right \rfloor=k\)

我们直接暴力这\(\left \lfloor \frac{\max a_i}{T} \right \rfloor\)段区间,前缀和算一下这段区间里有多少个\(a_i\)即可

复杂度显然调和级数,视\(n\)与\(\max a_i\)同级,复杂度为\(O(n\log n)\)

代码

#include<bits/stdc++.h>
#define re register
#define LL long long
#define max(a,b) ((a)>(b)?(a):(b))
const int maxn=1e6+5;
inline int read() {
char c=getchar();int x=0;while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
}
int n,pre[maxn],T;LL ans,tmp;
inline int calc(int l,int r) {
return (r>T?pre[T]:pre[r])-(l?pre[l-1]:0);
}
int main() {
n=read();
for(re int x,i=1;i<=n;i++) x=read(),ans+=x,T=max(T,x),pre[x]++;
for(re int i=1;i<=T;i++) pre[i]+=pre[i-1];
for(re int i=2;i<=T;++i) {
LL now=0;
for(re int cnt=0,l=0,j=i-1;l<=T;j+=i,l+=i,++cnt)
now+=1ll*calc(l,j)*cnt;
if(1ll*now*(i-1)>tmp) tmp=1ll*now*(i-1);
}
printf("%lld\n",ans-tmp);
return 0;
}

uoj21 【UR #1】缩进优化的更多相关文章

  1. 【uoj#21】[UR #1]缩进优化 数学

    题目描述 给出 $n$ 个数 ,求 $\text{Min}_{x=1}^{\infty}\sum\limits_{i=1}^n(\lfloor\frac {a_i}x\rfloor+a_i\ \tex ...

  2. UOJ_21_【UR #1】缩进优化_数学

    UOJ_21_[UR #1]缩进优化_数学 题面:http://uoj.ac/problem/21 最小化$\sum\limits{i=1}^{n}a[i]/x+a[i]\;mod\;x$ =$\su ...

  3. 【UOJ#21】【UR#1】缩进优化

    我好弱啊,什么题都做不出来QAQ 原题: 小O是一个热爱短代码的选手.在缩代码方面,他是一位身经百战的老手.世界各地的OJ上,很多题的最短解答排行榜都有他的身影.这令他感到十分愉悦. 最近,他突然发现 ...

  4. UOJ#21 【UR #1】缩进优化

    传送门 http://uoj.ac/problem/21 枚举 (调和级数?) $\sum_{i=1}^{n} (a_i / x + a_i \bmod x) =\sum a_i - (\sum_{i ...

  5. uoj21 缩进优化(整除分块,乱搞)

    题目大意: 给定一个长度为\(n\)的序列 让你找一个\(x\),使得\(ans\)尽可能小 其中$$ans=\sum_{i=1}^{n}\lfloor\frac{a_i}{x}\rfloor + \ ...

  6. uoj problem 21 缩进优化

    题目: 小O是一个热爱短代码的选手.在缩代码方面,他是一位身经百战的老手.世界各地的OJ上,很多题的最短解答排行榜都有他的身影.这令他感到十分愉悦. 最近,他突然发现,很多时候自己的程序明明看起来比别 ...

  7. ●UOJ 21 缩进优化

    题链: http://uoj.ac/problem/21 题解: ...技巧题吧 先看看题目让求什么: 令$F(x)=\sum_{i=1}^{n}(\lfloor a[i]/x \rfloor +a[ ...

  8. UOJ 做题记录

    UOJ 做题记录 其实我这么弱> >根本不会做题呢> > #21. [UR #1]缩进优化 其实想想还是一道非常丝播的题目呢> > 直接对于每个缩进长度统计一遍就好 ...

  9. UOJ Round #1 [数论 | DP 排列]

    UOJ Round #1 难度很良心啊! 做出了前两题,第三题看到仙人掌就吓哭了. [UR #1]缩进优化 就是求 \[ \sum_{i=1}^n a_i - (x-1)\sum_{i=1}^n\lf ...

随机推荐

  1. LInux多线程编程----线程特定数据的处理函数

    1.pthread_key_t和pthread_key_create() 线程中特有的线程存储, Thread Specific Data .线程存储有什么用了?他是什么意思了?大家都知道,在多线程程 ...

  2. 配置ssh连接会话复用免密码登录

    我们经常使用ssh连接远程主机,为了方便,避免每次登录输入密码,通常使用密钥登录.如果没有设置密钥, 则需要使用密码登录了,若每次都输入密码则十分繁琐.我们可以设置ssh连接会话复用,则登录成功后,会 ...

  3. SQL Server2012 安装方法详解

    SQL Server2012 安装方法详解 - MonkeyBrothers的博客 - CSDN博客 https://blog.csdn.net/monkeybrothers/article/deta ...

  4. .ssh 别名连接

    参考ssh支持配置 man ssh_config 配置模板 vim ~/.ssh/config Host <别名> Port <机器端口号> IdentityFile < ...

  5. JDK8新特性之接口默认方法与静态方法

    接口默认方法与静态方法 有这样一些场景,如果一个接口要添加一个方法,那所有的接口实现类都要去实现,而某些实现类根本就不需要实现这个方法也要写一个空实现,所以接口默认方法就是为了解决这个问题. 接口静态 ...

  6. Pandas中的DataFrame按指定顺序输出所有列的方法

    问题: 输出新建的DataFrame对象时,DataFrame中各列的显示顺序和DataFrame定义中的顺序不一致. 例如: import pandas as pd grades = [48,99, ...

  7. dnslog小技巧

    一.dnslog利用场景 主要针对无回显的情况. Sql-Blind RCE SSRF RFI(Remote File Inclusion) 二.原理 将dnslog平台中的特有字段payload带入 ...

  8. css垂直居中设置

    转载自大佬的文章:纯css实现垂直居中的几种方法(https://www.cnblogs.com/hutuzhu/p/4450850.html) 总结得很棒,有好几种方法自己没用过的,拷贝过来给自己看 ...

  9. 2019-4-26-VisualStudio-开发文件自定义工具单文件生成工具

    title author date CreateTime categories VisualStudio 开发文件自定义工具单文件生成工具 lindexi 2019-04-26 10:49:32 +0 ...

  10. react 使用触摸事件

    react开发支持的事件中,onClick事件,部分标签不支持点击,只能onTouchEnd,但是在移动端,手指触碰到事件绑定元素上,滑动,也会触发该事件,故来share解决办法,有更好的方法,欢迎评 ...