对主定理(Master Theorem)的理解
前言
虽说在学OI的时候学到了非常多的有递归结构的算法或方法,也很清楚他们的复杂度,但更多时候只是能够大概脑补这些方法为什么是这个复杂度,而从未从定理的角度去严格证明他们。因此借着这个机会把主定理整个梳理一遍。
介绍
主定理(Master Theorem)提供了用于分析一类有递归结构算法时间复杂度的方法。这种递归算法通常有这样的结构:
def solve(problem):
solve_without_recursion()
for subProblem in problem:
solve(subProblem)
我们可以用一种表示方式来概括这些结构的算法:对于一个规模为\(n\)的问题,我们把它分为\(a\)个子问题,每个子问题规模为\(\frac nb\)。那么这种方法的复杂度\(T(n)\)可以表示为:
\]
其中\(a\ge 1,b>1\)为常数,\(\frac{n}{b}\)指\(\lfloor \frac{n}{b}\rfloor\)或\(\lceil \frac{n}{b}\rceil\),\(f(n)\)为创造这些递归或者将这些子问题结果整合的函数。对这个方法我们可以建一个递归树:

其中树高为\(\log_bn\),树的第\(i\)层有\(a^i\)个节点,每个节点的问题规模为\(\frac{n}{b^i}\)。则这棵树有\(a^{\log_bn}=n^{\log_ba}\)个叶子节点。因此这种方法的复杂度也可以表示为:
\]
从中我们可以看出,整个方法的复杂度取决于\(f(n)\)的复杂度。主定理对\(f(n)\)分了三种情况:
- \(\exist \varepsilon>0\ s.t.\ f(n)=O(n^{\log_ba-\varepsilon})\)。此时\(T(n)=\Theta(n^{\log_ba})\)。
- \(f(n)=\Theta(n^{\log_ba})\)。此时\(T(n)=\Theta(n^{\log_ba}\lg n)\)。
- \(\exist \varepsilon>0\ s.t.\ f(n)=\Omega(n^{\log_ba+\varepsilon})\),且\(\exist c<1\),当\(n\)足够大时,有\(a\, f(\frac{n}{b})\le c\, f(n)\)。此时\(T(n)=\Theta(f(n))\)。
\(f(n)\)含\(\log\)的情况类似,待补充。
证明
Case 1
令\(g(n)=\sum_{i=0}^{\log_bn-1}a^if(\frac{n}{b^i})\),由\(f(n)=O(n^{\log_ba-\varepsilon})\),得:
\]
之后就是对后面式子的化简:
\sum_{i=0}^{\log_bn-1}a^i\Big(\frac{n}{b^i}\Big)^{\log_ba-\varepsilon} &= n^{\log_ba-\varepsilon}\sum_{i=0}^{\log_bn-1}\Big(\frac{ab^\varepsilon}{b^{\log_ba}}\Big)^i\\
&= n^{\log_ba-\varepsilon}\sum_{i=0}^{\log_bn-1}(b^\varepsilon)^i\\
&= n^{\log_ba-\varepsilon}\Big(\frac{(b^\varepsilon)^{\log_bn}-1}{b^\varepsilon-1}\Big)^i\\
&= n^{\log_ba-\varepsilon}\Big(\frac{n^\varepsilon-1}{b^\varepsilon-1}\Big)^i
\end{aligned}
\]
因此\(g(n)=O(\sum_{i=0}^{\log_bn-1}a^i(\frac{n}{b^i})^{\log_ba-\varepsilon})=O(n^{\log_ba})\)。所以有:
\]
Case 2
同Case 1。令\(g(n)=\sum_{i=0}^{\log_bn-1}a^if(\frac{n}{b^i})\)得:
\]
继续化简:
\sum_{i=0}^{\log_bn-1}a^i\Big(\frac{n}{b^i}\Big)^{\log_ba} &= n^{\log_ba}\sum_{i=0}^{\log_bn-1}\Big(\frac{a}{b^{\log_ba}}\Big)^i\\
&= n^{\log_ba}\log_bn
\end{aligned}
\]
因此可得\(g(n)=n^{\log_ba}\log_bn=n^{\log_ba}\lg n\)。所以有:
\]
Case 3
还是令\(g(n)=\sum_{i=0}^{\log_bn-1}a^if(\frac{n}{b^i})\)。但Case 3这里有一个条件:\(a\, f(\frac{n}{b})\le c\, f(n)\)。我们对这个条件做一下处理:
a\, f\Big(\frac{n}{b}\Big) &\le c\, f(n)\\
\Rightarrow f\Big(\frac{n}{b}\Big) &\le \frac{c}{a}f(n)\\
\Rightarrow f\Big(\frac{n}{b^2}\Big) &\le \frac{c}{a}f\Big(\frac nb\Big)\le\Big(\frac{c}{a}\Big)^2f(n)\\
&\vdots\\
f\Big(\frac{n}{b^i}\Big) &\le\Big(\frac{c}{a}\Big)^if(n)\\
\Rightarrow a^i\, f\Big(\frac{n}{b^i}\Big) &\le c^i\, f(n)\\
\end{aligned}
\]
由此我们可以很轻易的向下化简:
\sum_{i=0}^{\log_bn-1}a^i\Big(\frac{n}{b^i}\Big)^{\log_ba} &\le \sum_{i=0}^{\log_bn-1}c^i\,f(n)+O(1)\\
&\le f(n)\sum_{i=0}c^i+O(1)\\
&=f(n)\Big(\frac{1}{1-c}\Big)+O(1)\\
&=f(n)
\end{aligned}
\]
得\(g(n)=O(f(n))\)。又因为\(g(n)=\sum_{i=0}^{\log_bn-1}a^if(\frac{n}{b^i})\ge f(n)\),得\(g(n)=\Omega(f(n))\)。因此\(g(n)=\Theta(f(n))\)。
所以有:
\]
证毕。
应用
二叉树建树
\]
此时\(\log_ba<1\),满足Case 1。
BFPRT(Median of Medians)
\]
此时\(\log_ba>1\),即划分之后总规模减小(\(1/5+7/10<1\)),满足Case 2。
归并排序
\]
此时\(\log_ba=1\),满足Case 3。
对主定理(Master Theorem)的理解的更多相关文章
- 算法设计与分析 - 主定理Master theorem (分治法递推时间复杂度)
英文原版不上了 直接中文 定义 假设有递推关系式T(n)=aT(n/b)+f(n) 其中n为问题规模 a为递推的子问题数量 n/b为每个子问题的规模(假设每个子问题的规模基本一样) f(n)为递推以外 ...
- 主定理(Master Theorem)与时间复杂度
1. 问题 Karatsuba 大整数的快速乘积算法的运行时间(时间复杂度的递推关系式)为 T(n)=O(n)+4⋅T(n/2),求其最终的时间复杂度. 2. 主定理的内容 3. 分析 所以根据主定理 ...
- 重新粗推了一下Master Theorem
主定理一般形式是T(n) = a T(n / b) + f(n), a >= 1, b > 1.递归项可以理解为一个高度为 logbn 的 a 叉树, 这样 total operation ...
- 答:SQLServer DBA 三十问之二:系统DB有哪些,都有什么作用,需不需要做备份,为什么;损坏了如何做还原(主要是master库)
2. 系统DB有哪些,都有什么作用,需不需要做备份,为什么:损坏了如何做还原(主要是master库): master:它包含一个系统表集合,是整个实例的中央存储库,维护登录账户,其他数据库,文件分布, ...
- Master Theorem
Master theorem provides a solution in asymptotic terms to solve time complexity problem of most divi ...
- 确界原理 supremum and infimum principle 戴德金定理 Dedekind theorem
确界原理 supremum and infimum principle 戴德金定理 Dedekind theorem http://www.math.ubc.ca/~cass/courses/m ...
- [BZOJ4007][JLOI2015]战争调度(DP+主定理)
第一眼DP,发现不可做,第二眼就只能$O(2^{1024})$暴搜了. 重新审视一下这个DP,f[x][i]表示在x的祖先已经全部染色之后,x的子树中共有i个参战平民的最大贡献. 设k为总结点数,对于 ...
- 旋度定理(Curl Theorem)和散度定理(Divergence theorem)
原文链接 首先说说格林公式(Green's theorem).对于一段封闭曲线,若其围城的区域D为单连通区域(内部任意曲线围城的区域都属于院区域),则有如下公式: 其中其中L为D的边界,取正方向.如果 ...
- O、Θ、Ω&主定理
1.这些是时间复杂度的.(e.g. O(n).Θ(n).Ω(n)) 主要为主定理(坏东西) 2.本质 O <= Θ = Ω >= 3.(你可以把他们都试一遍)主要用处(目前,2020-09 ...
随机推荐
- shell脚本自动备份MySQL数据库
脚本如下: #!/bin/bash #数据库IP dbserver='127.0.0.1' #数据库用户名 dbuser='root' #数据密码 dbpasswd=' #数据库,如有多个库用空格分开 ...
- MySQL热机双备之双主同步复制配置
此配置方案来源于csdn前辈博客,奈何找不到出处了,抱拳!!! 1. MySQL同步机制概述 MySQL支持单向.异步复制,复制过程中一台服务器充当主服务器,一台或多台服务器充当从服务器,双主同步要 ...
- jdk升级后Eclipse无法启动问题
overview: 今日安装jdk11,设置好环境变量后,eclipse无法运行,由于项目依赖原因,不想更新eclipse的版本. 我的jdk是1.8,在将环境变量设回1.8后依然无法运行.在多次尝试 ...
- CSS中元素的显示模式
在CSS中,根据元素显示模式的不同元素标签被分为了两类:行内元素(inline-level).块级元素(block-level). 1,首先介绍什么是行内元素,什么又是块级元素? 1.1,行内元素就 ...
- 【转】Makefile步步为营
Makefile步步为营 本目录主要包含Makefile一步步递进学习的示例代码 makefile代码实例:https://www.lanzous.com/i9m9npi step0:Makefile ...
- PMP--1.7 项目治理
治理凌驾于管理之上 组织治理用于影响项目治理. 组织治理需要组织根据组织文化.项目类型和组织需求裁剪治理框架,适用于当前组织. 其实组织治理的内容,在项目管理初期不需要详细了解,组织治理的内容都是高层 ...
- Blazor初体验之寻找存储client-side jwt token的方法
https://www.cnblogs.com/chen8854/p/securing-your-blazor-apps-authentication-with-clientside-blazor-u ...
- 正则表达式中的exec()方法
推荐该博主的内容链接: https://blog.csdn.net/ddwddw4/article/details/84658398?ops_request_misc=%7B%22request%5F ...
- 【daily】文件分割限速下载,及合并分割文件
说明 主要功能: 1) 分割文件, 生成下载任务; 2) 定时任务: 检索需要下载的任务, 利用多线程下载并限制下载速度; 3) 定时任务: 检索可合并的文件, 把n个文件合并为完整的文件. GitH ...
- node中 package.json 文件说明
1.概述 每个项目的根目录下面,一般都有一个package.json文件,定义了这个项目所需要的各种模块,以及项目的配置信息(比如名称.版本.许可证等元数据).npm install命令根据这个配置文 ...