对主定理(Master Theorem)的理解
前言
虽说在学OI的时候学到了非常多的有递归结构的算法或方法,也很清楚他们的复杂度,但更多时候只是能够大概脑补这些方法为什么是这个复杂度,而从未从定理的角度去严格证明他们。因此借着这个机会把主定理整个梳理一遍。
介绍
主定理(Master Theorem)提供了用于分析一类有递归结构算法时间复杂度的方法。这种递归算法通常有这样的结构:
def solve(problem):
solve_without_recursion()
for subProblem in problem:
solve(subProblem)
我们可以用一种表示方式来概括这些结构的算法:对于一个规模为\(n\)的问题,我们把它分为\(a\)个子问题,每个子问题规模为\(\frac nb\)。那么这种方法的复杂度\(T(n)\)可以表示为:
\]
其中\(a\ge 1,b>1\)为常数,\(\frac{n}{b}\)指\(\lfloor \frac{n}{b}\rfloor\)或\(\lceil \frac{n}{b}\rceil\),\(f(n)\)为创造这些递归或者将这些子问题结果整合的函数。对这个方法我们可以建一个递归树:

其中树高为\(\log_bn\),树的第\(i\)层有\(a^i\)个节点,每个节点的问题规模为\(\frac{n}{b^i}\)。则这棵树有\(a^{\log_bn}=n^{\log_ba}\)个叶子节点。因此这种方法的复杂度也可以表示为:
\]
从中我们可以看出,整个方法的复杂度取决于\(f(n)\)的复杂度。主定理对\(f(n)\)分了三种情况:
- \(\exist \varepsilon>0\ s.t.\ f(n)=O(n^{\log_ba-\varepsilon})\)。此时\(T(n)=\Theta(n^{\log_ba})\)。
- \(f(n)=\Theta(n^{\log_ba})\)。此时\(T(n)=\Theta(n^{\log_ba}\lg n)\)。
- \(\exist \varepsilon>0\ s.t.\ f(n)=\Omega(n^{\log_ba+\varepsilon})\),且\(\exist c<1\),当\(n\)足够大时,有\(a\, f(\frac{n}{b})\le c\, f(n)\)。此时\(T(n)=\Theta(f(n))\)。
\(f(n)\)含\(\log\)的情况类似,待补充。
证明
Case 1
令\(g(n)=\sum_{i=0}^{\log_bn-1}a^if(\frac{n}{b^i})\),由\(f(n)=O(n^{\log_ba-\varepsilon})\),得:
\]
之后就是对后面式子的化简:
\sum_{i=0}^{\log_bn-1}a^i\Big(\frac{n}{b^i}\Big)^{\log_ba-\varepsilon} &= n^{\log_ba-\varepsilon}\sum_{i=0}^{\log_bn-1}\Big(\frac{ab^\varepsilon}{b^{\log_ba}}\Big)^i\\
&= n^{\log_ba-\varepsilon}\sum_{i=0}^{\log_bn-1}(b^\varepsilon)^i\\
&= n^{\log_ba-\varepsilon}\Big(\frac{(b^\varepsilon)^{\log_bn}-1}{b^\varepsilon-1}\Big)^i\\
&= n^{\log_ba-\varepsilon}\Big(\frac{n^\varepsilon-1}{b^\varepsilon-1}\Big)^i
\end{aligned}
\]
因此\(g(n)=O(\sum_{i=0}^{\log_bn-1}a^i(\frac{n}{b^i})^{\log_ba-\varepsilon})=O(n^{\log_ba})\)。所以有:
\]
Case 2
同Case 1。令\(g(n)=\sum_{i=0}^{\log_bn-1}a^if(\frac{n}{b^i})\)得:
\]
继续化简:
\sum_{i=0}^{\log_bn-1}a^i\Big(\frac{n}{b^i}\Big)^{\log_ba} &= n^{\log_ba}\sum_{i=0}^{\log_bn-1}\Big(\frac{a}{b^{\log_ba}}\Big)^i\\
&= n^{\log_ba}\log_bn
\end{aligned}
\]
因此可得\(g(n)=n^{\log_ba}\log_bn=n^{\log_ba}\lg n\)。所以有:
\]
Case 3
还是令\(g(n)=\sum_{i=0}^{\log_bn-1}a^if(\frac{n}{b^i})\)。但Case 3这里有一个条件:\(a\, f(\frac{n}{b})\le c\, f(n)\)。我们对这个条件做一下处理:
a\, f\Big(\frac{n}{b}\Big) &\le c\, f(n)\\
\Rightarrow f\Big(\frac{n}{b}\Big) &\le \frac{c}{a}f(n)\\
\Rightarrow f\Big(\frac{n}{b^2}\Big) &\le \frac{c}{a}f\Big(\frac nb\Big)\le\Big(\frac{c}{a}\Big)^2f(n)\\
&\vdots\\
f\Big(\frac{n}{b^i}\Big) &\le\Big(\frac{c}{a}\Big)^if(n)\\
\Rightarrow a^i\, f\Big(\frac{n}{b^i}\Big) &\le c^i\, f(n)\\
\end{aligned}
\]
由此我们可以很轻易的向下化简:
\sum_{i=0}^{\log_bn-1}a^i\Big(\frac{n}{b^i}\Big)^{\log_ba} &\le \sum_{i=0}^{\log_bn-1}c^i\,f(n)+O(1)\\
&\le f(n)\sum_{i=0}c^i+O(1)\\
&=f(n)\Big(\frac{1}{1-c}\Big)+O(1)\\
&=f(n)
\end{aligned}
\]
得\(g(n)=O(f(n))\)。又因为\(g(n)=\sum_{i=0}^{\log_bn-1}a^if(\frac{n}{b^i})\ge f(n)\),得\(g(n)=\Omega(f(n))\)。因此\(g(n)=\Theta(f(n))\)。
所以有:
\]
证毕。
应用
二叉树建树
\]
此时\(\log_ba<1\),满足Case 1。
BFPRT(Median of Medians)
\]
此时\(\log_ba>1\),即划分之后总规模减小(\(1/5+7/10<1\)),满足Case 2。
归并排序
\]
此时\(\log_ba=1\),满足Case 3。
对主定理(Master Theorem)的理解的更多相关文章
- 算法设计与分析 - 主定理Master theorem (分治法递推时间复杂度)
英文原版不上了 直接中文 定义 假设有递推关系式T(n)=aT(n/b)+f(n) 其中n为问题规模 a为递推的子问题数量 n/b为每个子问题的规模(假设每个子问题的规模基本一样) f(n)为递推以外 ...
- 主定理(Master Theorem)与时间复杂度
1. 问题 Karatsuba 大整数的快速乘积算法的运行时间(时间复杂度的递推关系式)为 T(n)=O(n)+4⋅T(n/2),求其最终的时间复杂度. 2. 主定理的内容 3. 分析 所以根据主定理 ...
- 重新粗推了一下Master Theorem
主定理一般形式是T(n) = a T(n / b) + f(n), a >= 1, b > 1.递归项可以理解为一个高度为 logbn 的 a 叉树, 这样 total operation ...
- 答:SQLServer DBA 三十问之二:系统DB有哪些,都有什么作用,需不需要做备份,为什么;损坏了如何做还原(主要是master库)
2. 系统DB有哪些,都有什么作用,需不需要做备份,为什么:损坏了如何做还原(主要是master库): master:它包含一个系统表集合,是整个实例的中央存储库,维护登录账户,其他数据库,文件分布, ...
- Master Theorem
Master theorem provides a solution in asymptotic terms to solve time complexity problem of most divi ...
- 确界原理 supremum and infimum principle 戴德金定理 Dedekind theorem
确界原理 supremum and infimum principle 戴德金定理 Dedekind theorem http://www.math.ubc.ca/~cass/courses/m ...
- [BZOJ4007][JLOI2015]战争调度(DP+主定理)
第一眼DP,发现不可做,第二眼就只能$O(2^{1024})$暴搜了. 重新审视一下这个DP,f[x][i]表示在x的祖先已经全部染色之后,x的子树中共有i个参战平民的最大贡献. 设k为总结点数,对于 ...
- 旋度定理(Curl Theorem)和散度定理(Divergence theorem)
原文链接 首先说说格林公式(Green's theorem).对于一段封闭曲线,若其围城的区域D为单连通区域(内部任意曲线围城的区域都属于院区域),则有如下公式: 其中其中L为D的边界,取正方向.如果 ...
- O、Θ、Ω&主定理
1.这些是时间复杂度的.(e.g. O(n).Θ(n).Ω(n)) 主要为主定理(坏东西) 2.本质 O <= Θ = Ω >= 3.(你可以把他们都试一遍)主要用处(目前,2020-09 ...
随机推荐
- 解决mysql登录报错ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using password: YES)问题
问题描述: 在ubuntu14.04上安装完MYSQL后,MYSQL默认给分配了一个默认密码,但当自己在终端上使用默认密码登录的时候,总会提示一个授权失败的错误. 报错信息:Access denied ...
- springmvc maven idea 多模块开发(三):建立子模块
传统的多模块方式是建立domain.dao.service等,这种方式是按照软件架构进行分割,现在更多的应该是倾向按照功能来解耦,module前期可以配置成jar,后期也可以建立独有的页面,独立的站点 ...
- vs工程配置eslint检测环境
vs工程打开一个js文件,会提示 "No ESLint configuration (e.g .eslintrc) found for file ......." 或 " ...
- Babel配置中的presets、plugins、各个阶段stage的含义
什么是Babel Babel 官方文档: https://babeljs.io/ Babel 中文文档:https://www.babeljs.cn/ 我们知道各个浏览器对JavaScript版本的支 ...
- 将 ASP.NET Core 2.1 升级到最新的长期支持版本ASP.NET Core 3.1
目录 前言 Microsoft.AspNetCore.Mvc.ViewFeatures.Internal 消失了 升级到 ASP.NET Core 3.1 项目文件(.csproj) Program. ...
- ASP.NET Core Razor 视图预编译、动态编译
0x01 前言 ASP.NET Core在默认发布情况下,会启动预编译将试图编译成xx.Views.dll,也许在视图中打算修改一处很细小的地方我们需要再重新编译视图进行发布.下面我将从 ASP.NE ...
- .NET CORE(C#) WPF 重新设计Instagram
微信公众号:Dotnet9,网站:Dotnet9,问题或建议:请网站留言, 如果对您有所帮助:欢迎赞赏. .NET CORE(C#) WPF 重新设计Instagram 阅读导航 本文背景 代码实现 ...
- JS高阶编程技巧--柯理化函数
首先看一段代码: let obj = { x: 100 }; function fn(y) { this.x += y; console.log(this); } 现在有一个需求:在1秒后,执行函数f ...
- MySql概述及入门(五)
MySql概述及入门(五) MySQL集群搭建之读写分离 读写分离的理解 为解决单数据库节点在高并发.高压力情况下出现的性能瓶颈问题,读写分离的特性包括会话不开启事务,读语句直接发送到 salve 执 ...
- iMacros 入门教程-基础函数介绍(2)
imacros 的 pos 参数是什么意思 position的缩写,如果有 2 个以上的元素共用完全相同的属性(比方说同一个小区的同一栋楼),这个 POS 的参数可以借由不同位置来帮助明确定位(也就是 ...