前言

虽说在学OI的时候学到了非常多的有递归结构的算法或方法,也很清楚他们的复杂度,但更多时候只是能够大概脑补这些方法为什么是这个复杂度,而从未从定理的角度去严格证明他们。因此借着这个机会把主定理整个梳理一遍。

介绍

主定理(Master Theorem)提供了用于分析一类有递归结构算法时间复杂度的方法。这种递归算法通常有这样的结构:

def solve(problem):
solve_without_recursion()
for subProblem in problem:
solve(subProblem)

我们可以用一种表示方式来概括这些结构的算法:对于一个规模为\(n\)的问题,我们把它分为\(a\)个子问题,每个子问题规模为\(\frac nb\)。那么这种方法的复杂度\(T(n)\)可以表示为:

\[T(n)=a\,T\Big(\frac nb\Big)+f(n)
\]

其中\(a\ge 1,b>1\)为常数,\(\frac{n}{b}\)指\(\lfloor \frac{n}{b}\rfloor\)或\(\lceil \frac{n}{b}\rceil\),\(f(n)\)为创造这些递归或者将这些子问题结果整合的函数。对这个方法我们可以建一个递归树:

其中树高为\(\log_bn\),树的第\(i\)层有\(a^i\)个节点,每个节点的问题规模为\(\frac{n}{b^i}\)。则这棵树有\(a^{\log_bn}=n^{\log_ba}\)个叶子节点。因此这种方法的复杂度也可以表示为:

\[T(n)=\Theta(n^{\log_ba})+\sum_{i=0}^{\log_bn-1}a^if\Big(\frac{n}{b^i}\Big)
\]

从中我们可以看出,整个方法的复杂度取决于\(f(n)\)的复杂度。主定理对\(f(n)\)分了三种情况:

  1. \(\exist \varepsilon>0\ s.t.\ f(n)=O(n^{\log_ba-\varepsilon})\)。此时\(T(n)=\Theta(n^{\log_ba})\)。
  2. \(f(n)=\Theta(n^{\log_ba})\)。此时\(T(n)=\Theta(n^{\log_ba}\lg n)\)。
  3. \(\exist \varepsilon>0\ s.t.\ f(n)=\Omega(n^{\log_ba+\varepsilon})\),且\(\exist c<1\),当\(n\)足够大时,有\(a\, f(\frac{n}{b})\le c\, f(n)\)。此时\(T(n)=\Theta(f(n))\)。

\(f(n)\)含\(\log\)的情况类似,待补充。

证明

Case 1

令\(g(n)=\sum_{i=0}^{\log_bn-1}a^if(\frac{n}{b^i})\),由\(f(n)=O(n^{\log_ba-\varepsilon})\),得:

\[g(n)=O\Big(\sum_{i=0}^{\log_bn-1}a^i\Big(\frac{n}{b^i}\Big)^{\log_ba-\varepsilon}\Big)
\]

之后就是对后面式子的化简:

\[\begin{aligned}
\sum_{i=0}^{\log_bn-1}a^i\Big(\frac{n}{b^i}\Big)^{\log_ba-\varepsilon} &= n^{\log_ba-\varepsilon}\sum_{i=0}^{\log_bn-1}\Big(\frac{ab^\varepsilon}{b^{\log_ba}}\Big)^i\\
&= n^{\log_ba-\varepsilon}\sum_{i=0}^{\log_bn-1}(b^\varepsilon)^i\\
&= n^{\log_ba-\varepsilon}\Big(\frac{(b^\varepsilon)^{\log_bn}-1}{b^\varepsilon-1}\Big)^i\\
&= n^{\log_ba-\varepsilon}\Big(\frac{n^\varepsilon-1}{b^\varepsilon-1}\Big)^i
\end{aligned}
\]

因此\(g(n)=O(\sum_{i=0}^{\log_bn-1}a^i(\frac{n}{b^i})^{\log_ba-\varepsilon})=O(n^{\log_ba})\)。所以有:

\[T(n)=\Theta(n^{\log_ba})+O(n^{\log_ba})=\Theta(n^{\log_ba})
\]

Case 2

同Case 1。令\(g(n)=\sum_{i=0}^{\log_bn-1}a^if(\frac{n}{b^i})\)得:

\[g(n)=\Theta\Big(\sum_{i=0}^{\log_bn-1}a^i\Big(\frac{n}{b^i}\Big)^{\log_ba}\Big)
\]

继续化简:

\[\begin{aligned}
\sum_{i=0}^{\log_bn-1}a^i\Big(\frac{n}{b^i}\Big)^{\log_ba} &= n^{\log_ba}\sum_{i=0}^{\log_bn-1}\Big(\frac{a}{b^{\log_ba}}\Big)^i\\
&= n^{\log_ba}\log_bn
\end{aligned}
\]

因此可得\(g(n)=n^{\log_ba}\log_bn=n^{\log_ba}\lg n\)。所以有:

\[T(n)= \Theta(n^{\log_ba})+\Theta(n^{\log_ba}\lg n)=\Theta(n^{\log_ba}\lg n)
\]

Case 3

还是令\(g(n)=\sum_{i=0}^{\log_bn-1}a^if(\frac{n}{b^i})\)。但Case 3这里有一个条件:\(a\, f(\frac{n}{b})\le c\, f(n)\)。我们对这个条件做一下处理:

\[\begin{aligned}
a\, f\Big(\frac{n}{b}\Big) &\le c\, f(n)\\
\Rightarrow f\Big(\frac{n}{b}\Big) &\le \frac{c}{a}f(n)\\
\Rightarrow f\Big(\frac{n}{b^2}\Big) &\le \frac{c}{a}f\Big(\frac nb\Big)\le\Big(\frac{c}{a}\Big)^2f(n)\\
&\vdots\\
f\Big(\frac{n}{b^i}\Big) &\le\Big(\frac{c}{a}\Big)^if(n)\\
\Rightarrow a^i\, f\Big(\frac{n}{b^i}\Big) &\le c^i\, f(n)\\
\end{aligned}
\]

由此我们可以很轻易的向下化简:

\[\begin{aligned}
\sum_{i=0}^{\log_bn-1}a^i\Big(\frac{n}{b^i}\Big)^{\log_ba} &\le \sum_{i=0}^{\log_bn-1}c^i\,f(n)+O(1)\\
&\le f(n)\sum_{i=0}c^i+O(1)\\
&=f(n)\Big(\frac{1}{1-c}\Big)+O(1)\\
&=f(n)
\end{aligned}
\]

得\(g(n)=O(f(n))\)。又因为\(g(n)=\sum_{i=0}^{\log_bn-1}a^if(\frac{n}{b^i})\ge f(n)\),得\(g(n)=\Omega(f(n))\)。因此\(g(n)=\Theta(f(n))\)。

所以有:

\[T(n)=\Theta(n^{\log_ba})+\Theta(f(n))=\Theta(f(n))
\]

证毕。

应用

二叉树建树

\[T(n)=2T\Big(\frac{n}{2}\Big)+O(1),\ T(n)=O(n)
\]

此时\(\log_ba<1\),满足Case 1。

BFPRT(Median of Medians)

\[T(n)\le T\Big(\frac{n}{5}\Big)+\Big(\frac{7n}{10}\Big)+O(n),\ T(n)=O(n)
\]

此时\(\log_ba>1\),即划分之后总规模减小(\(1/5+7/10<1\)),满足Case 2。

归并排序

\[T(n)=2T\Big(\frac{n}{2}\Big)+O(n),\ T(n)=O(\lg n)
\]

此时\(\log_ba=1\),满足Case 3。

对主定理(Master Theorem)的理解的更多相关文章

  1. 算法设计与分析 - 主定理Master theorem (分治法递推时间复杂度)

    英文原版不上了 直接中文 定义 假设有递推关系式T(n)=aT(n/b)+f(n) 其中n为问题规模 a为递推的子问题数量 n/b为每个子问题的规模(假设每个子问题的规模基本一样) f(n)为递推以外 ...

  2. 主定理(Master Theorem)与时间复杂度

    1. 问题 Karatsuba 大整数的快速乘积算法的运行时间(时间复杂度的递推关系式)为 T(n)=O(n)+4⋅T(n/2),求其最终的时间复杂度. 2. 主定理的内容 3. 分析 所以根据主定理 ...

  3. 重新粗推了一下Master Theorem

    主定理一般形式是T(n) = a T(n / b) + f(n), a >= 1, b > 1.递归项可以理解为一个高度为 logbn 的 a 叉树, 这样 total operation ...

  4. 答:SQLServer DBA 三十问之二:系统DB有哪些,都有什么作用,需不需要做备份,为什么;损坏了如何做还原(主要是master库)

    2. 系统DB有哪些,都有什么作用,需不需要做备份,为什么:损坏了如何做还原(主要是master库): master:它包含一个系统表集合,是整个实例的中央存储库,维护登录账户,其他数据库,文件分布, ...

  5. Master Theorem

    Master theorem provides a solution in asymptotic terms to solve time complexity problem of most divi ...

  6. 确界原理 supremum and infimum principle 戴德金定理 Dedekind theorem

    确界原理  supremum and infimum principle  戴德金定理  Dedekind theorem http://www.math.ubc.ca/~cass/courses/m ...

  7. [BZOJ4007][JLOI2015]战争调度(DP+主定理)

    第一眼DP,发现不可做,第二眼就只能$O(2^{1024})$暴搜了. 重新审视一下这个DP,f[x][i]表示在x的祖先已经全部染色之后,x的子树中共有i个参战平民的最大贡献. 设k为总结点数,对于 ...

  8. 旋度定理(Curl Theorem)和散度定理(Divergence theorem)

    原文链接 首先说说格林公式(Green's theorem).对于一段封闭曲线,若其围城的区域D为单连通区域(内部任意曲线围城的区域都属于院区域),则有如下公式: 其中其中L为D的边界,取正方向.如果 ...

  9. O、Θ、Ω&主定理

    1.这些是时间复杂度的.(e.g. O(n).Θ(n).Ω(n)) 主要为主定理(坏东西) 2.本质 O <= Θ = Ω >= 3.(你可以把他们都试一遍)主要用处(目前,2020-09 ...

随机推荐

  1. shell脚本自动备份MySQL数据库

    脚本如下: #!/bin/bash #数据库IP dbserver='127.0.0.1' #数据库用户名 dbuser='root' #数据密码 dbpasswd=' #数据库,如有多个库用空格分开 ...

  2. MySQL热机双备之双主同步复制配置

    此配置方案来源于csdn前辈博客,奈何找不到出处了,抱拳!!! 1.  MySQL同步机制概述 MySQL支持单向.异步复制,复制过程中一台服务器充当主服务器,一台或多台服务器充当从服务器,双主同步要 ...

  3. jdk升级后Eclipse无法启动问题

    overview: 今日安装jdk11,设置好环境变量后,eclipse无法运行,由于项目依赖原因,不想更新eclipse的版本. 我的jdk是1.8,在将环境变量设回1.8后依然无法运行.在多次尝试 ...

  4. CSS中元素的显示模式

     在CSS中,根据元素显示模式的不同元素标签被分为了两类:行内元素(inline-level).块级元素(block-level). 1,首先介绍什么是行内元素,什么又是块级元素? 1.1,行内元素就 ...

  5. 【转】Makefile步步为营

    Makefile步步为营 本目录主要包含Makefile一步步递进学习的示例代码 makefile代码实例:https://www.lanzous.com/i9m9npi step0:Makefile ...

  6. PMP--1.7 项目治理

    治理凌驾于管理之上 组织治理用于影响项目治理. 组织治理需要组织根据组织文化.项目类型和组织需求裁剪治理框架,适用于当前组织. 其实组织治理的内容,在项目管理初期不需要详细了解,组织治理的内容都是高层 ...

  7. Blazor初体验之寻找存储client-side jwt token的方法

    https://www.cnblogs.com/chen8854/p/securing-your-blazor-apps-authentication-with-clientside-blazor-u ...

  8. 正则表达式中的exec()方法

    推荐该博主的内容链接: https://blog.csdn.net/ddwddw4/article/details/84658398?ops_request_misc=%7B%22request%5F ...

  9. 【daily】文件分割限速下载,及合并分割文件

    说明 主要功能: 1) 分割文件, 生成下载任务; 2) 定时任务: 检索需要下载的任务, 利用多线程下载并限制下载速度; 3) 定时任务: 检索可合并的文件, 把n个文件合并为完整的文件. GitH ...

  10. node中 package.json 文件说明

    1.概述 每个项目的根目录下面,一般都有一个package.json文件,定义了这个项目所需要的各种模块,以及项目的配置信息(比如名称.版本.许可证等元数据).npm install命令根据这个配置文 ...