R data analysis examples

功效分析

power analysis for one-sample t-test单样本t检验

例1.一批电灯泡,标准寿命850小时,标准偏差50,40小时的差值是巨大的,此研究设定效应值d=

(850-810)/50,希望有90%的可能检测到,即功效值为0.9,还希望有95%的把握不误报显著差异,

问需要多少支电灯泡。

H0=850,HA=810

library('pwr')
pwr.t.test(d=(850-810)/50,power=0.9,sig.level=0.05,type="one.sample",alternative = 'two.sided') One-sample t test power calculation n = 18.44623
d = 0.8
sig.level = 0.05
power = 0.9
alternative = two.sided

结果说明需要19支灯泡去拒绝H0,并保证在HA下有达到0.9的功效

然后,如果我们只取10支电灯泡,会达到什么程度的功效水平呢?

pwr.t.test(d=(850-810)/50,n=10,sig.level=0.05,type="one.sample",alternative = 'two.sided')

One-sample t test power calculation 

n = 10
d = 0.8
sig.level = 0.05
power = 0.6162328
alternative = two.sided

结果功效只有0.616。那麽如果选15支呢?

pwr.t.test(d=(850-810)/50,n=15,sig.level=0.05,type="one.sample",alternative = 'two.sided')

One-sample t test power calculation 

n = 15
d = 0.8
sig.level = 0.05
power = 0.8213105
alternative = two.sided

power=0.821,你将有18%的可能错过你要寻找的效应值

取样20支,

pwr.t.test(d=(850-810)/50,n=20,sig.level=0.05,type="one.sample",alternative = 'two.sided')

One-sample t test power calculation 

n = 20
d = 0.8
sig.level = 0.05
power = 0.9238988
alternative = two.sided

功效为0.924 大于n=19时的功效0.9

结论,取样n增大,相应功效power也会增大

下面改变标准差

pwr.t.test(d=(850-810)/30,power=0.8,sig.level=0.05,type="one.sample",alternative = 'two.sided')

One-sample t test power calculation 

One-sample t test power calculation 

n = 6.581121
d = 1.333333
sig.level = 0.05
power = 0.8
alternative = two.sided

所需的取样量减少

下面我们再讨论一下the effect size

pwr.t.test(d=(50-10)/50,power=0.9,sig.level=0.05,type="one.sample",alternative="two.sided")

One-sample t test power calculation 

n = 18.44623
d = 0.8
sig.level = 0.05
power = 0.9
alternative = two.sided

n=18.44623

pwr.t.test(d=(1-.2),power=0.9,sig.level=0.05,type="one.sample",alternative="two.sided")

One-sample t test power calculation 

n = 18.44623
d = 0.8
sig.level = 0.05
power = 0.9
alternative = two.sided

n=18.44623

可以看到 结果这3个实验的结果n 相等。但是去决定 the true effect size并不简单。一个

正确的the effect size的估值是成功的功效分析的关键。

R笔记 单样本t检验 功效分析的更多相关文章

  1. 吴裕雄--天生自然 R语言开发学习:功效分析(续一)

    #----------------------------------------# # R in Action (2nd ed): Chapter 10 # # Power analysis # # ...

  2. 吴裕雄--天生自然 R语言开发学习:功效分析

    #----------------------------------------# # R in Action (2nd ed): Chapter 10 # # Power analysis # # ...

  3. SPSS学习笔记参数检验—单样本t检验

    单样本t检验 目的:利用来自总体的样本数据,推断该总体的均值是否与指定的检验值存在差异. 适用条件:样本来自的总体应服从或者近似服从正态分布. 注:当样本量n比较大时:由中心极限定理得知,即使原数据不 ...

  4. 朋友聚会,下馆子要到哪家饭馆?——单样本T检验帮你找到答案

      聚会时,五花八门的饭馆让人眼花缭乱,应该到哪家店吃呢?除了美味的食物,良好的服务态度也是好饭馆的必备品质,如何判断一家饭馆的服务态度如何?此时可以用单样本T检验来找答案~ 让顾客对A饭馆的服务态度 ...

  5. R in action读书笔记(13)第十章 功效分析

    功效分析 功效分析可以帮助在给定置信度的情况下,判断检测到给定效应值时所需的样本量.反过来,它也可以帮助你在给定置信度水平情况下,计算在某样本量内能检测到给定效应值的概率.如果概率低得难以接受,修改或 ...

  6. R语言实战(五)方差分析与功效分析

    本文对应<R语言实战>第9章:方差分析:第10章:功效分析 ================================================================ ...

  7. python笔记之常用模块用法分析

    python笔记之常用模块用法分析 内置模块(不用import就可以直接使用) 常用内置函数 help(obj) 在线帮助, obj可是任何类型 callable(obj) 查看一个obj是不是可以像 ...

  8. 【R】正态检验与R语言

    正态检验与R语言 1.Kolmogorov–Smirnov test 统计学里, Kolmogorov–Smirnov 检验(亦称:K–S 检验)是用来检验数据是否符合某种分布的一种非参数检验,通过比 ...

  9. 【R笔记】R语言函数总结

    R语言与数据挖掘:公式:数据:方法 R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头,并且如果以 . 开头,第二个字 ...

随机推荐

  1. [django]django xlrd处理xls中日期转换问题

    xlrd会把xls文件中比如20160--03-01类型的时间转换成整数,那么我们如何保证xlrd读取进来的时间为2016-03-01格式呢? 使用xlrd中的xldate_as_tuple函数 代码 ...

  2. [Django]模型学习记录篇--基础

    模型学习记录篇,仅仅自己学习时做的记录!!! 实现模型变更的三个步骤: 修改你的模型(在models.py文件中). 运行python manage.py makemigrations ,为这些修改创 ...

  3. Web报表工具FineReport的JS API开发(一)

    很多报表软件可以利用JS接口来实现更多更复杂的功能.以FineReport为例,开放了大量的JS API给用户,根据执行JS的主体不同可以将分为三大类:FR.FS和contentWindow. 在js ...

  4. 【JavaScript 插件】实现图片倒影效果 - reflex.js

    目前版本: reflex.js 1.5 适用的主流浏览器: Mozilla Firefox 1.5+, Opera 9+, Safari and IE6+ 原理:通过 canvas 重画图片,显示倒影 ...

  5. vijos P1780 【NOIP2012】 开车旅行

    描述 小\(A\)和小\(B\)决定利用假期外出旅行,他们将想去的城市从\(1\)到\(N\)编号,且编号较小的城市在编号较大的城市的西边,已知各个城市的海拔高度互不相同,记城市\(i\)的海拔高度为 ...

  6. CentOS 7.1, 7.2 下安装dotnet core

    .NET CORE的官方(http://dotnet.github.io/getting-started/)只提供了Windows, Ubuntu14.04, 及Docker(也是基于Ubuntu14 ...

  7. PhpStorm XDebug 远程调试

    现在我们自己公司的各种开发和测试服务器,都是使用阿里云的服务器.一些PHP的项目,无法在本地搭建完整的环境,在外网服务器上调试更方便定位问题.发现网上没有完整的关于如何配置PHPStorm和XDebu ...

  8. 【转载】WEB前端开发规范文档

    本文转载自谈笑涧<WEB前端开发规范文档> 为 新项目写的一份规范文档, 分享给大家. 我想前端开发过程中, 无论是团队开发, 还是单兵做站, 有一份开发文档做规范, 对开发工作都是很有益 ...

  9. 在JS方法中返回多个值的三种方法

    在使用JS编程中,有时需要在一个方法返回两个个或两个以上的数据,用下面的几种方法都可以实现: 1 使用数组的方式,如下: <html> <head> <title> ...

  10. DbUtility v3 背后的故事

    DbUtility v3 背后的故事 时间 DbUtility v3构思了差不多大半年,真正开发到第一个版本发布到NuGet却只花了50天.中途大量时间在完善 Jumony 3,只有三周来开发DbUt ...