如何正确理解古典概率中的条件概率 《考研概率论学习之我见》 -by zobol
“B事件发生的条件下,A事件发生的概率”?
"在A集合内有多少B的样本点"?
“在B约束条件下,A发生的概率变化为?”
“B事件中的一个样本点,同时也落在A样本点集合的概率是多少”
“将B作为样本空间,则A的概率变为多少”
1.条件概率在古典概率中到底该怎么被定义?
2.从交事件AB来推导条件概率公式
3.在考研古典概率中,条件概率公式的一些不足
4.在现实生活中如何理解条件概率?
一、条件概率在古典概率中到底该怎么被定义?
我们经常把条件概率定义为“B事件发生的条件下,A事件发生的概率”,这个定义如果一开始就扔出来,往往会对后面的学习产生误导。
因为B事件发生可以看作是“随机事件B中的一个基本样本点的发生”,但是古典概率中样本点都是平等的,所以是不可能互相产生影响的。也就是说事件B中的一个基本样本点,就古典概率来讲,对A事件中包含的任意样本点都不会产生关系。
这个推论可以总结为“古典概率的所有样本点之间都是等概率的,都是平等的”
其实这就是古典概率的两条定义之一,那到底在古典概率中,应该怎么定义条件概率呢?
其实应该定义为
“B随机事件中包含的任意一个样本点,也同时属于A事件的样本点集合的概率”
那为什么要这样定义呢,还是需要从交事件P(AB)的计算中来推导。
二.从交事件AB来推导条件概率公式
交事件的意思就是“A、B同时发生的概率”,如果我们知道P(A)和P(B)那么如何计算P(AB)呢?
许多人都想到直接相乘:
但是P(AB)真的一定等于P(A)乘P(B)吗?
这里其实隐藏了一个条件就是:事件A和事件B两者没有任何关系,只有这样才能直接相乘。
但是古典概率的各个样本点之间的关系是
“古典概率各个样本点事件互为互斥事件”
这意味着什么呢?意味着发生了事件A中的一个样本点,则事件A集合之外的样本点一定会不会发生。
这也就是说如果事件A,B存在于一个样本空间,那么从古典概率的角度来看,它们之间就是一定存在联系的,不能这样直接乘。
那应该怎么做呢?我们还是从V-N图的思路来想,P(AB)可以看作是从样本空间任意选取一个样本点,正好落在AB的重复交合区域的概率。
*那么我们已经知道P(A)的概率了,也就是“在空间中任意选取一个点,落在A的概率”,如果我们把范围再缩小一次,也就是说我们可以得知,在A集合内有多少B的样本点,这样一个比例,然后用P(A)去乘这个比例,就可以得到最终结果P(AB)。
(注意:我们需要得知的不是“存在于A中,也同时存在于B中的而样本点个数”,而仅仅需要得知一个比例值(如果知道前者,就不需要计算这么麻烦,直接古典概率定义就好))。
这个比例值就是条件概率:
所以条件概率的定义出现:
“B事件中的一个样本点,同时也落在A样本点集合的概率是多少”
可见,在古典概率中,如果用“B事件发生的条件下,A事件发生的概率”这种定义,是不容易推导出条件概率的公式定义的,必须从交事件来推导,但这种推导也会产生一个小疑惑。
三.在考研古典概率中,条件概率公式的一些不足
根据我上文之前的推导,我们可以推导出这样的公式:
这个公式,可以看作是,事件A,B的发生顺序,对AB同时发生是没有影响。
这是因为古典概率中的事件发生,都可以看作是集合运算,而集合运算交换律,计算顺序不影响结果。
但是在现实世界就不不一定是这样的了。
四.在现实生活中如何理解条件概率?
在现实世界我们遇到很多事件,是具有顺序性的,比如零件组装,如果事件B先执行,那么事件A可能就做不了,这应该怎么设计事件呢。
答案是没法设计,因为这是古典概率本身的定义导致的缺点,如果遇到这样的事件你就不可以使用古典概率来预测了,需要换模型了。
那么就单纯谈古典概率中的条件概率,我们可以理解为:
“B事件中的一个样本点,同时也落在A样本点集合的概率是多少”
“如果B事件必然发生,则A事件也跟着B事件发生的概率是多少”
由此推出了v-n图理解,可以看作是样本空间的缩小。
“将A作为样本空间,则B的概率变为多少”
如何正确理解古典概率中的条件概率 《考研概率论学习之我见》 -by zobol的更多相关文章
- 2.如何正确理解古典概率中的条件概率《zobol的考研概率论教程》
写本文主要是帮助粉丝理解考研中的古典概率-条件概率的具体定义. "B事件发生的条件下,A事件发生的概率"? "在A集合内有多少B的样本点"? "在B约 ...
- 怎么理解相互独立事件?真的是没有任何关系的事件吗?《考研概率论学习之我见》 -by zobol
1.从条件概率的定义来看独立事件的定义 2.从古典概率的定义来看独立事件的定义 3.P(A|B)和P(A)的关系是什么? 4.由P(AB)=P(A)P(B)推出"独立" 5.从韦恩 ...
- 开始讨论离散型随机变量吧!《考研概率论学习之我见》 -by zobol
上一文中,笔者给出了随机变量的基本定义:一个可测映射,从结果空间到实数集,我们的目的是为了引入函数这个数学工具到考研概率论中,但是我们在现实中面对的一些事情结果,映射而成的随机变量和其对应的概率值,并 ...
- 对互斥事件和条件概率的相互理解《考研概率论学习之我见》 -by zobol
1.从条件概率来定义互斥和对立事件 2.互斥事件是独立事件吗? 3.每个样本点都可以看作是互斥事件,来重新看待条件概率 一.从条件概率来定义互斥和对立事件 根据古典概率-条件概率的定义,当在" ...
- 最简单的离散概率分布,伯努利分布 《考研概率论学习之我见》 -by zobol
上文讲了离散型随机变量的分布,我们从最简单的离散型分布伯努利分布讲起,伯努利分布很简单,但是在现实生活中使用的很频繁.很多从事体力工作的人,在生活中也是经常自觉地"发现"伯努利分布 ...
- 如何正确理解正则表达式中的分隔符 \b
前言:好久不见,博客园. 最近在学习研究regex,其中有个特迷惑自己的知识点是分隔符 ( word boundary) [\b] (注:为了方便,后文都以[]来包含字符,并不是reg规则里面的[] ...
- 正确理解JavaScript中的this关键字
JavaScript有this关键字,this跟JavaScript的执行上下文密切相关,很多前端开发工程师至今对this关键字还是模棱两可,本文将结合代码讲解下JavaScript的this关键字. ...
- (转载)新手如何正确理解GitHub中“PR(pull request)”中的意思
我从知乎看到的两个答案,分别从实际意义以及语言学角度告诉你改怎么理解PR,很简洁,这个理解非常棒,会解决新手刚看到PR(pull request)这个词时的困惑. 实际意义: 有一个仓库,叫R ...
- 正确理解MySQL中的where和having的区别
原文:https://blog.csdn.net/yexudengzhidao/article/details/54924471 以前在学校里学习过SQLserver数据库,发现学习的都是皮毛,今天以 ...
随机推荐
- 解决github上不去
github上不去 在hosts文件中加入下列IP,保存即可生效. !!!!!注意!!!!! 网站对应的IP需要去[https://www.ipaddress.com/]网站查询, 可能与下面给出的不 ...
- sourceCRT设置全局字符集为utf-8
以前刚打开服务器crt字符集都会默认是default模式,搞得每次都要手动设置成UTF-8. 烦躁. 将CRT全局字符集设置成UTF-8格式方法: 设置窗口不会断掉: 即每100s发送一次ls \n ...
- 帝国cms 7.5版列表页分页样式修改笔记
最近在用帝国改版我的个人博客站点,这个也是我第一次尝试用帝国来做博客,之前用过wordpress,每用一个新的程序,都会有些新的收获,也会学到一些新的东西. 在改用帝国之前,我也在网上大概了解了一下, ...
- 使用ABP SignalR重构消息服务(二)
使用ABP SignalR重构消息服务(二) 上篇使用ABP SignalR重构消息服务(一)主要讲的是SignalR的基础知识和前端如何使用SignalR,这段时间也是落实方案设计.这篇我主要讲解S ...
- python入门基础-介绍、基础语法
一.anaconda下的spyder简介 Spyder 是一个强大的交互式 Python 语言开发环境,提供高级的代码编辑.交互测试.调试等特性,支持包括 Windows.Linux 和 OS X 系 ...
- Java第十五周作业
Cola公司的雇员分为以下若干类:(知识点:多态) [必做题]• 4.1 ColaEmployee :这是所有员工总的父类,属性:员工的姓名,员工的生日月份.方法:getSalary(int mont ...
- web服务报错类型
401:无权限(HttpStatus.UNAUTHORIZED) 404:页面找不到 405:不支持get/post请求,如只支持get请求但传了post请求 400:请求格式错误,如不为null但传 ...
- python学习-Day26
目录 今日内容详细 编程思想 面向过程编程 面向对象编程 类与对象 概念 类与对象的创建 先定义类 后产生对象 语法结构 如何产生对象 对象的实例化 绑定方法 今日内容详细 编程思想 面向过程编程 将 ...
- python3 获取函数变量
Python 3.8可以使用f字符串调试功能: 1 test_dict = {1: "1", 2: "2", 3: "3"} 2 print ...
- ONNXRuntime学习笔记(三)
接上一篇完成的pytorch模型训练结果,模型结构为ResNet18+fc,参数量约为11M,最终测试集Acc达到94.83%.接下来有分两个部分:导出onnx和使用onnxruntime推理. 一. ...