基于kubernetes的分布式限流
做为一个数据上报系统,随着接入量越来越大,由于 API 接口无法控制调用方的行为,因此当遇到瞬时请求量激增时,会导致接口占用过多服务器资源,使得其他请求响应速度降低或是超时,更有甚者可能导致服务器宕机。
一、概念
限流(Ratelimiting)指对应用服务的请求进行限制,例如某一接口的请求限制为 100 个每秒,对超过限制的请求则进行快速失败或丢弃。
1.1 使用场景
限流可以应对:
- 热点业务带来的突发请求;
- 调用方 bug 导致的突发请求;
- 恶意攻击请求。
1.2 维度
对于限流场景,一般需要考虑两个维度的信息:
时间
限流基于某段时间范围或者某个时间点,也就是我们常说的“时间窗口”,比如对每分钟、每秒钟的时间窗口做限定
资源
基于可用资源的限制,比如设定最大访问次数,或最高可用连接数。
限流就是在某个时间窗口对资源访问做限制,比如设定每秒最多100个访问请求。
1.3 分布式限流
分布式限流相比于单机限流,只是把限流频次分配到各个节点中,比如限制某个服务访问100qps,如果有10个节点,那么每个节点理论上能够平均被访问10次,如果超过了则进行频率限制。
二、分布式限流常用方案
基于Guava的客户端限流
Guava是一个客户端组件,在其多线程模块下提供了以RateLimiter为首的几个限流支持类。它只能对“当前”服务进行限流,即它不属于分布式限流的解决方案。
网关层限流
服务网关,作为整个分布式链路中的第一道关卡,承接了所有用户来访请求。我们在网关层进行限流,就可以达到了整体限流的目的了。目前,主流的网关层有以软件为代表的Nginx,还有Spring Cloud中的Gateway和Zuul这类网关层组件,也有以硬件为代表的F5。
中间件限流
将限流信息存储在分布式环境中某个中间件里(比如Redis缓存),每个组件都可以从这里获取到当前时刻的流量统计,从而决定是拒绝服务还是放行流量。
限流组件
目前也有一些开源组件提供了限流的功能,比如Sentinel就是一个不错的选择。Sentinel是阿里出品的开源组件,并且包含在了Spring Cloud Alibaba组件库中。Hystrix也具有限流的功能。
Guava的Ratelimiter设计实现相当不错,可惜只能支持单机,网关层限流如果是单机则不太满足高可用,并且分布式网关的话还是需要依赖中间件限流,而redis之类的网络通信需要占用一小部分的网络消耗。阿里的Sentinel也是同理,底层使用的是redis或者zookeeper,每次访问都需要调用一次redis或者zk的接口。那么在云原生场景下,我们有没有什么更好的办法呢?
对于极致追求高性能的服务不需要考虑熔断、降级来说,是需要尽量减少网络之间的IO,那么是否可以通过一个总限频然后分配到具体的单机里面去,在单机中实现平均的限流,比如限制某个ip的qps为100,服务总共有10个节点,那么平均到每个服务里就是10qps,此时就可以通过guava的ratelimiter来实现了,甚至说如果服务的节点动态调整,单个服务的qps也能动态调整。
三、基于kubernetes的分布式限流
在Spring Boot应用中,定义一个filter,获取请求参数里的key(ip、userId等),然后根据key来获取rateLimiter,其中,rateLimiter的创建由数据库定义的限频数和副本数来判断,最后,再通过rateLimiter.tryAcquire来判断是否可以通过。
3.1 kubernetes中的副本数
在实际的服务中,数据上报服务一般无法确定客户端的上报时间、上报量,特别是对于这种要求高性能,服务一般都会用到HPA来实现动态扩缩容,所以,需要去间隔一段时间去获取服务的副本数。
func CountDeploymentSize(namespace string, deploymentName string) *int32 {
deployment, err := client.AppsV1().Deployments(namespace).Get(context.TODO(), deploymentName, metav1.GetOptions{})
if err != nil {
return nil
}
return deployment.Spec.Replicas
}
用法:GET host/namespaces/test/deployments/k8s-rest-api直接即可。
3.2 rateLimiter的创建
在RateLimiterService中定义一个LoadingCache<String, RateLimiter>,其中,key可以为ip、userId等,并且,在多线程的情况下,使用refreshAfterWrite只阻塞加载数据的线程,其他线程则返回旧数据,极致发挥缓存的作用。
private final LoadingCache<String, RateLimiter> loadingCache = Caffeine.newBuilder()
.maximumSize(10_000)
.refreshAfterWrite(20, TimeUnit.MINUTES)
.build(this::createRateLimit);
//定义一个默认最小的QPS
private static final Integer minQpsLimit = 3000;
之后是创建rateLimiter,获取总限频数totalLimit和副本数replicas,之后是自己所需的逻辑判断,可以根据totalLimit和replicas的情况来进行qps的限定。
public RateLimiter createRateLimit(String key) {
log.info("createRateLimit,key:{}", key);
int totalLimit = 获取总限频数,可以在数据库中定义
Integer replicas = kubernetesService.getDeploymentReplicas();
RateLimiter rateLimiter;
if (totalLimit > 0 && replicas == null) {
rateLimiter = RateLimiter.create(totalLimit);
} else if (totalLimit > 0) {
int nodeQpsLimit = totalLimit / replicas;
rateLimiter = RateLimiter.create(nodeQpsLimit > minQpsLimit ? nodeQpsLimit : minQpsLimit);
} else {
rateLimiter = RateLimiter.create(minQpsLimit);
}
log.info("create rateLimiter success,key:{},rateLimiter:{}", key, rateLimiter);
return rateLimiter;
}
3.3 rateLimiter的获取
根据key获取RateLimiter,如果有特殊需求的话,需要判断key不存在的尝尽
public RateLimiter getRateLimiter(String key) {
return loadingCache.get(key);
}
3.4 filter里的判断
最后一步,就是使用rateLimiter来进行限流,如果rateLimiter.tryAcquire()为true,则进行filterChain.doFilter(request, response),如果为false,则返回HttpStatus.TOO_MANY_REQUESTS
public class RateLimiterFilter implements Filter {
@Resource
private RateLimiterService rateLimiterService;
@Override
public void doFilter(ServletRequest request, ServletResponse response, FilterChain filterChain) throws IOException, ServletException {
HttpServletRequest httpServletRequest = (HttpServletRequest) request;
HttpServletResponse httpServletResponse = (HttpServletResponse) response;
String key = httpServletRequest.getHeader("key");
RateLimiter rateLimiter = rateLimiterService.getRateLimiter(key);
if (rateLimiter != null) {
if (rateLimiter.tryAcquire()) {
filterChain.doFilter(request, response);
} else {
httpServletResponse.setStatus(HttpStatus.TOO_MANY_REQUESTS.value());
}
} else {
filterChain.doFilter(request, response);
}
}
}
四、性能压测
为了方便对比性能之间的差距,我们在本地单机做了下列测试,其中,总限频都设置为3万。
无限流
使用redis限流
其中,ping redis大概6-7ms左右,对应的,每次请求需要访问redis,时延都有大概6-7ms,性能下降明显
自研限流
性能几乎追平无限流的场景,guava的rateLimiter确实表现卓越
五、其他问题
5.1 对于保证qps限频准确的时候,应该怎么解决呢?
在k8s中,服务是动态扩缩容的,相应的,每个节点应该都要有所变化,如果对外宣称限频100qps,而且后续业务方真的要求百分百准确,只能把LoadingCache<String, RateLimiter>的过期时间调小一点,让它能够近实时的更新单节点的qps。这里还需要考虑一下k8s的压力,因为每次都要获取副本数,这里也是需要做缓存的
5.2 服务从1个节点动态扩为4个节点,这个时候新节点识别为4,但其实有些并没有启动完,会不会造成某个节点承受了太大的压力
理论上是存在这个可能的,这个时候需要考虑一下初始的副本数的,扩缩容不能一蹴而就,一下子从1变为4变为几十个这种。一般的话,生产环境肯定是不能只有一个节点,并且要考虑扩缩容的话,至于要有多个副本预备的
5.3 如果有多个副本,怎么保证请求是均匀的
这个是依赖于k8s的service负载均衡策略的,这个我们之前做过实验,流量确实是能够均匀的落到节点上的。还有就是,我们整个限流都是基于k8s的,如果k8s出现问题,那就是整个集群所有服务都有可能出现问题了。
参考
1.常见的分布式限流解决方案
2.分布式服务限流实战
3.高性能
基于kubernetes的分布式限流的更多相关文章
- 一个轻量级的基于RateLimiter的分布式限流实现
上篇文章(限流算法与Guava RateLimiter解析)对常用的限流算法及Google Guava基于令牌桶算法的实现RateLimiter进行了介绍.RateLimiter通过线程锁控制同步,只 ...
- 分布式限流组件-基于Redis的注解支持的Ratelimiter
原文:https://juejin.im/entry/5bd491c85188255ac2629bef?utm_source=coffeephp.com 在分布式领域,我们难免会遇到并发量突增,对后端 ...
- 【分布式架构】--- 基于Redis组件的特性,实现一个分布式限流
分布式---基于Redis进行接口IP限流 场景 为了防止我们的接口被人恶意访问,比如有人通过JMeter工具频繁访问我们的接口,导致接口响应变慢甚至崩溃,所以我们需要对一些特定的接口进行IP限流,即 ...
- 限流(三)Redis + lua分布式限流
一.简介 1)分布式限流 如果是单实例项目,我们使用Guava这样的轻便又高性能的堆缓存来处理限流.但是当项目发展为多实例了以后呢?这时候我们就需要采用分布式限流的方式,分布式限流可以以redis + ...
- 基于.net的分布式系统限流组件 C# DataGridView绑定List对象时,利用BindingList来实现增删查改 .net中ThreadPool与Task的认识总结 C# 排序技术研究与对比 基于.net的通用内存缓存模型组件 Scala学习笔记:重要语法特性
基于.net的分布式系统限流组件 在互联网应用中,流量洪峰是常有的事情.在应对流量洪峰时,通用的处理模式一般有排队.限流,这样可以非常直接有效的保护系统,防止系统被打爆.另外,通过限流技术手段,可 ...
- Redis实现的分布式锁和分布式限流
随着现在分布式越来越普遍,分布式锁也十分常用,我的上一篇文章解释了使用zookeeper实现分布式锁(传送门),本次咱们说一下如何用Redis实现分布式锁和分布限流. Redis有个事务锁,就是如下的 ...
- 基于注解的接口限流+统一session认证
代码心得: 一个基本的做法:对于用户身份认证做到拦截器里,针对HandlerMethod进行统一拦截认证,根据方法上的注解标识,判别是否需要身份验证,并将查找出来的User实体存入ThreadLoca ...
- Sentinel整合Dubbo限流实战(分布式限流)
之前我们了解了 Sentinel 集成 SpringBoot实现限流,也探讨了Sentinel的限流基本原理,那么接下去我们来学习一下Sentinel整合Dubbo及 Nacos 实现动态数据源的限流 ...
- 案例 | 荔枝微课基于 kubernetes 搭建分布式压测系统
王诚强,荔枝微课基础架构负责人.热衷于基础技术研发推广,致力于提供稳定高效的基础架构,推进了荔枝微课集群化从0到1的发展,云原生架构持续演进的实践者. 本文根据2021年4月10日深圳站举办的[腾讯云 ...
随机推荐
- Mybatis——一级缓存与二级缓存
关于Mybatis的学习主要参考了狂神的视频 一级缓存 (1).使用范围:从sqlSession会话开始到结束 (2).使用:默认打开,无法关闭 (3).测试使用(需要打开日志观察数据库的连接情况): ...
- Linux 查询文件内容重复数 uniq、sort命令
前提:uniq只能查询数据相邻的重复次数,而sort可以查询乱序的重复次数. 原谅我,以下内容都是复制菜鸟驿站的!!! Linux uniq 命令用于检查及删除文本文件中重复出现的行列,一般与 sor ...
- 装饰器property的简单运用
property函数:在类中使用,将类中的方法伪装成一个属性 使用方法:在函数,方法,类的上面一行直接@装饰器的名字 装饰器的分类: 装饰器函数 装饰器方法:property 装饰类 class St ...
- 4月20日 python学习总结 套接字工作流程
一.套接字工作流程 一个生活中的场景.你要打电话给一个朋友,先拨号,朋友听到电话铃声后提起电话,这时你和你的朋友就建立起了连接,就可以讲话了.等交流结束,挂断电话结束此次交谈. 生活中的场景就解释了这 ...
- VS Code通过code runner插件编译运行多个cpp文件 | 链接编译.h文件
1.多个cpp文件在同一级目录 参考:https://jingyan.baidu.com/article/2f9b480d7ceb3d01ca6cc224.html 此时可通过修改Code Runne ...
- REST 和RPC对比?
1.RPC主要的缺陷是服务提供方和调用方式之间的依赖太强,需要对每一个微服务进行接口的定义,并通过持续继承发布,严格版本控制才不会出现冲突. 2.REST是轻量级的接口,服务的提供和调用不存在代码之间 ...
- Mosquitto安装和使用
Mosquitto是一个实现了MQTT3.1协议的代理服务器,由MQTT协议创始人之一的Andy Stanford-Clark开发,它为我们提供了非常棒的轻量级数据交换的解决方案. 下载地址是: ht ...
- (转载)MySQL删除所有表的外键约束、禁用外键约束
其实如果想删除所有表可以直接如下操作: 在navicat中直接选中所有表,然后右键删除表即可,会有提示,一路确定,就会先删掉没有外键的表和字表,只要一路确定,删几批就把表都删完了,并不算太麻烦. 转: ...
- 描述 Java 中的重载和重写?
重载和重写都允许你用相同的名称来实现不同的功能,但是重载是编译时活动, 而重写是运行时活动.你可以在同一个类中重载方法,但是只能在子类中重写方 法.重写必须要有继承.
- 基于redis实现未登录购物车
springboot 工程 主要说明购物车流程(故将登录用户信息保存至session) 未登录时 将用户临时key 保存至cookie 有不足之处 请大佬指点 项目源码: https://github ...