Minimax 社论
题面
LOJ #2537 / 洛谷 P5298 「PKUWC2018」Minimax
一棵有根二叉树 \(\mathcal T\) .
定义结点 \(x\) 的权值为:
- 若 \(x\) 是叶子,则权值在输入中给出(叶子权值各不相同)
- 若不然,则有 \(p_x\) 的概率是其子节点权值最大值,\(1-p_x\) 的概率是其子节点权值最小值 .
假设 \(1\) 号结点的权值有 \(m\) 种可能性,权值第 \(i\) 小的可能性的权值是 \(V_i\),它的概率为 \(D_i\)(\(D_i>0\)),求:
\]
答案对 \(998244353\) 取模 .
题解
令 \(dp_{u, w}\) 表示点 \(u\) 的权值为 \(w\) 的概率 .
由于 \(\mathcal T\) 是二叉树,于是权值来源只可能有两个 .
设权值来源子树根为 \(a\),另一子树根为 \(b\),则:
\]
直接 dp 是 \(O(n^2)\) 的,可以获得 40pts .
展开写,令 \(ls\) 为 \(u\) 的左儿子,\(rs\) 为右儿子,则:
\(\displaystyle\begin{aligned}dp_{u, w} &= dp_{ls,w}\cdot\left(p_u\cdot\sum_{w'=1}^{j-1}dp_{rs, w'}+(1-p_u)\sum_{w'=j+1}^mdp_{rs,w'}\right)+dp_{rs,w}\cdot\left(p_u\cdot\sum_{w'=1}^{j-1}dp_{ls, w'}+(1-p_u)\sum_{w'=j+1}^mdp_{ls,w'}\right)\\&=p_u\left(dp_{rs,w}\sum_{w'=1}^{j-1}dp_{ls, w'}+dp_{ls,w}\sum_{w'=1}^{j-1}dp_{rs, w'}\right)+(1-p_u)\left(dp_{rs,w}\sum_{w'=j+1}^mdp_{ls, w'}+dp_{ls,w}\sum_{w'=j+1}^mdp_{rs, w'}\right)\end{aligned}\)
化成这个只是为了展示这个前后缀和的形式 .
考虑线段树合并 .
维护前缀、后缀概率和,于是合并的时候可以直接算,注意合并时一棵树有某节点但另一棵树没有时相当于一个整体乘操作,打一个乘法懒标记即可 .
离散化权值之后,时空复杂度均为 \(O(n\log n)\) .
细节见代码
代码
Code :
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <ctime>
#include <climits>
#include <vector>
#include <queue>
#include <cmath>
#include <unordered_map>
#include <set>
#include <random>
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
const int N = 3e5+50, M = 40*N;
const ll P = 998244353, invS = 796898467;
template<typename T>
inline int chkmin(T& a, const T& b){if (a > b) a = b; return a;}
template<typename T>
inline int chkmax(T& a, const T& b){if (a < b) a = b; return a;}
int n, m, deg[N], son[N][2], root[N];
ll val[N];
vector<ll> G;
inline int discrete(ll w){return lower_bound(G.begin(), G.end(), w) - G.begin();}
struct SMF
{
int ch[M][2], cc;
ll sum[M], laz[M]; // mul tag (1)
inline void pushup(int u){sum[u] = (sum[ch[u][0]] + sum[ch[u][1]]) % P;}
inline void pushmul(int u, ll v){if (!u) return ; sum[u] = sum[u] * v % P; laz[u] = laz[u] * v % P;}
inline void pushdown(int u)
{
if (laz[u] == 1) return ; // none
if (ch[u][0]) pushmul(ch[u][0], laz[u]);
if (ch[u][1]) pushmul(ch[u][1], laz[u]);
laz[u] = 1;
}
inline void insert(int& u, int l, int r, int p, ll v)
{
if (!u){u = ++cc; laz[u] = 1;}
if (l == r){sum[u] = v % P; return ;}
int mid = (l + r) >> 1;
pushdown(u);
if (p <= mid) insert(ch[u][0], l, mid, p, v);
else insert(ch[u][1], mid+1, r, p, v);
pushup(u);
}
inline int merge(int x, int y, int l, int r, ll xmul, ll ymul, ll v)
{
if (!x && !y) return 0;
if (!x){pushmul(y, ymul); return y;}
if (!y){pushmul(x, xmul); return x;}
pushdown(x); pushdown(y);
int mid = (l + r) >> 1;
ll lsx = sum[ch[x][0]] % P, lsy = sum[ch[y][0]] % P, rsx = sum[ch[x][1]] % P, rsy = sum[ch[y][1]] % P;
ch[x][0] = merge(ch[x][0], ch[y][0], l, mid, (xmul + rsy * (1-v+P) % P) % P, (ymul + rsx * (1-v+P) % P) % P, v);
ch[x][1] = merge(ch[x][1], ch[y][1], mid+1, r, (xmul + lsy * v % P) % P, (ymul + lsx * v % P) % P, v); // magic
pushup(x); return x;
}
inline ll order(int x, int l, int r) // get answer
{
if (l == r) return l * G[l] % P * sum[x] % P * sum[x] % P;
pushdown(x);
int mid = (l + r) >> 1;
return (order(ch[x][0], l, mid) + order(ch[x][1], mid+1, r)) % P;
}
}T;
inline void dfs(int u)
{
if (!deg[u]) T.insert(root[u], 1, m, val[u], 1);
else if (deg[u] == 1){dfs(son[u][0]); root[u] = root[son[u][0]];}
else if (deg[u] == 2)
{
dfs(son[u][0]); dfs(son[u][1]);
root[u] = T.merge(root[son[u][0]], root[son[u][1]], 1, m, 0, 0, val[u]);
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("i.in", "r", stdin);
#endif
scanf("%d", &n); G.emplace_back(-114514);
for (int i=1, x; i<=n; i++){scanf("%d", &x); son[x][deg[x]++] = i;}
for (int i=1; i<=n; i++)
{
scanf("%lld", val+i);
if (deg[i]) val[i] = val[i] * invS % P;
else G.emplace_back(val[i]); // leaf
}
stable_sort(G.begin(), G.end());
G.erase(unique(G.begin(), G.end()), G.end());
m = G.size() + 1;
for (int i=1; i<=n; i++)
if (!deg[i]) val[i] = discrete(val[i]);
dfs(1);
printf("%lld\n", T.order(root[1], 1, m));
return 0;
}
Reference
链接形式 ref .
- https://www.luogu.com.cn/blog/qiuly/solution-p5298
- https://www.luogu.com.cn/blog/CFA-44/solution-p5298
- https://www.luogu.com.cn/blog/Mrsrz/solution-p5298
- https://www.luogu.com.cn/blog/Isaunoya/solution-p5298
Minimax 社论的更多相关文章
- HackerRank and MiniMax
传送门 Sherlock and MiniMax Authored by darkshadows on May 07 2014 Problem Statement Watson gives Sherl ...
- uva 1331 - Minimax Triangulation(dp)
option=com_onlinejudge&Itemid=8&page=show_problem&category=514&problem=4077&mosm ...
- Principle of Computing (Python)学习笔记(7) DFS Search + Tic Tac Toe use MiniMax Stratedy
1. Trees Tree is a recursive structure. 1.1 math nodes https://class.coursera.org/principlescomputin ...
- 【loj3044】【zjoi2019】Minimax
题目 描述 给出一颗树,定义根节点1的深度为1,其他点深度为父亲深度+1: 如下定义一个点的点权: 1.叶子:为其编号:2.奇数深度:为其儿子编号最大值:3.偶数深度:为其儿子编号最小值: ...
- loj#2537. 「PKUWC2018」Minimax
题目链接 loj#2537. 「PKUWC2018」Minimax 题解 设\(f_{u,i}\)表示选取i的概率,l为u的左子节点,r为u的子节点 $f_{u,i} = f_{l,i}(p \sum ...
- maple minimax函数
numapprox[minimax] - minimax rational approximation Calling Sequence minimax(f, x=a..b, [m, n], w, ...
- LOJ3044. 「ZJOI2019」Minimax 搜索
LOJ3044. 「ZJOI2019」Minimax 搜索 https://loj.ac/problem/3044 分析: 假设\(w(1)=W\),那么使得这个值变化只会有两三种可能,比\(W\)小 ...
- 【HackerRank】Sherlock and MiniMax
题目连接:Sherlock and MiniMax Watson gives Sherlock an array A1,A2...AN. He asks him to find an integer ...
- BZOJ5461: [PKUWC2018]Minimax
BZOJ5461: [PKUWC2018]Minimax https://lydsy.com/JudgeOnline/problem.php?id=5461 分析: 写出\(dp\)式子:$ f[x] ...
随机推荐
- Volatile的学习
首先先介绍三个性质 可见性 可见性代表主内存中变量更新,线程中可以及时获得最新的值. 下面例子证明了线程中可见性的问题 由于发现多次执行都要到主内存中取变量,所以会将变量缓存到线程的工作内存,这样当其 ...
- 一键解决Win10 LTSC 2021官方镜像存在的问题
一键解决Win10 LTSC 2021官方镜像存在的问题 由于适用了win10 ltsc 2021之后,发现官方镜像存在一些致命的bug.但是本人又喜欢这个官方精简的系统,所以进行了一些修复.并将搜集 ...
- 零基础学Java第二节(运算符、输入、选择流程控制)
本篇文章是<零基础学Java>专栏的第二篇文章,文章采用通俗易懂的文字.图示及代码实战,从零基础开始带大家走上高薪之路! 第一章 运算符 1.1 算术运算符的概述和用法 运算符 对常量和变 ...
- Spring Boot配置全局异常捕获
1 SpringBoot配置全局的异常捕获 项目的说明 配置thymeleaf作为视图模板 ExceptionController.java模拟测试用 MyAjaxExceptionHandler.j ...
- JavaScript数组操作常用方法
@ 目录 数组基础遍历方法. for for of for in 数组的基础操作方法. push:尾部追加元素 pop:尾部移出元素 unshift:头部追加元素 shift:头部移出元素 splic ...
- SQL年龄计算方法
第一种方法: 用DATEDIFF函数,DATEDIFF(YEAR,beginDate,endDate). 测试语句: 1 DECLARE @birthdayDate DATE 2 DECLARE @e ...
- mybatis中返回一个List字段
目的:在一个查询接口里面,返回一个人的信息,以及这个人所携带的东西的信息,返回效果如下: { "msg": { "listMain": [ { "id ...
- 分享JAVA的FTP和SFTP相关操作工具类
1.导入相关jar <!--FTPClient--><dependency> <groupId>commons-net</groupId> <a ...
- 看看CabloyJS是如何实现编辑页面脏标记的
应用场景 我们在使用Word.Excel时,当修改了内容之后在标题栏会显示脏标记,从而可以明确的告知用户内容有变动.此外,如果在没有保存的情况下关闭窗口,系统会弹出提示框,让用户选择是否放弃修改 那么 ...
- SQL Server各版本序列号/激活码/License/秘钥
SQL Server 2019 Enterprise:HMWJ3-KY3J2-NMVD7-KG4JR-X2G8G Enterprise Core:2C9JR-K3RNG-QD4M4-JQ2HR-846 ...