为什么我和同学对比了一下,发现我和他的做法差别很大啊

对于这种问题,我们把整个字符串分为两个部分:前缀顶着最高位和后缀没有顶着最高位。

我们枚举这个前缀,然后后缀通过 DP 来搞定。

不包含任何一个子串,似乎最有力的处理工具就是 ACAM。

于是我们可以确定这个 DP 的状态:\(dp[k][u]\) 表示从自动机的节点 \(u\) 上走 \(k\) 条边都遇不上被标记点的方案数。

转移:\(dp[k][u]\) 从 \(dp[k-1][trans[u][c]]\) 转移过来就好了。

但是这样会有一个问题:枚举出来的正整数含有前导 \(0\)。

考虑加上被判断成不合法的方案。我们枚举前导 \(0\) 的数量,然后将正整数分为四类:

//加前导0合法 / 不加前导0合法     - a
//加前导0合法 / 不加前导0不合法 - b=0
//加前导0不合法 / 不加前导0合法 - c
//加前导0不合法 / 不加前导0不合法 - d

可以发现我们原本计算的是 \(a+b\),但是我们需要计算 \(a+c\)。

枚举了前导 \(0\) 后,直接减去 \(a+b\) 然后加上 \(a+c\) 就可以了(

具体的话维护一个节点,每次都往 \(0\) 方向走就行了。

#include<cstring>
#include<cstdio>
#include<cctype>
typedef unsigned ui;
const ui M=1505,mod=1e9+7;
ui n,m,tot(1),dp[M][M],fail[M],trans[M][10];bool vis[M];char s[M],S[M];
inline void Insert(char*s){
ui u(1);
while(isdigit(*s)){
const ui&c=*s-48;*s++=0;
if(!trans[u][c])trans[u][c]=++tot;
u=trans[u][c];
}
vis[u]=true;
}
inline void Build(){
static ui L,R,q[M];L=1;
for(ui c=0;c<10;++c){
if(trans[1][c])q[++R]=trans[1][c],fail[trans[1][c]]=1;
else trans[1][c]=1;
}
while(L<=R){
const ui&u=q[L++];
for(ui c=0;c<10;++c){
if(trans[u][c])q[++R]=trans[u][c],fail[trans[u][c]]=trans[fail[u]][c];
else trans[u][c]=trans[fail[u]][c];
}
}
for(ui i=1;i<=R;++i)vis[q[i]]|=vis[fail[q[i]]];
}
signed main(){
ui ans(0);
scanf("%s%u",s+1,&n);m=strlen(s+1);
for(ui i=1;i<=n;++i){
scanf("%s",S);Insert(S);
}
Build();
for(ui u=1;u<=tot;++u)if(!vis[u])dp[0][u]=1;
for(ui i=1;i<=m;++i){
for(ui u=1;u<=tot;++u)if(!vis[u]){
for(ui c=0;c<10;++c)dp[i][u]=(dp[i][u]+dp[i-1][trans[u][c]])%mod;
}
}
ui u(1),now(1);
for(ui i=1;i<=m;++i){
if(vis[u])break;now=trans[now][0];
for(ui c=0;c<s[i]-48;++c)if(!vis[trans[u][c]])ans=(ans+dp[m-i][trans[u][c]])%mod;
if(i!=m)for(ui c=1;c<10;++c)ans=(ans+mod+dp[m-i-1][trans[1][c]]-dp[m-i-1][trans[now][c]])%mod;
u=trans[u][s[i]-48];
}
if(!vis[u])++ans,ans==mod&&(ans=0);
printf("%u",(ans+mod-1)%mod);
}

LGP3311题解的更多相关文章

  1. 2016 华南师大ACM校赛 SCNUCPC 非官方题解

    我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...

  2. noip2016十连测题解

    以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...

  3. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  4. Codeforces Round #353 (Div. 2) ABCDE 题解 python

    Problems     # Name     A Infinite Sequence standard input/output 1 s, 256 MB    x3509 B Restoring P ...

  5. 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解

    题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...

  6. 2016ACM青岛区域赛题解

    A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

  7. poj1399 hoj1037 Direct Visibility 题解 (宽搜)

    http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...

  8. 网络流n题 题解

    学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...

  9. CF100965C题解..

    求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...

随机推荐

  1. iconv(gb2312<->utf-8)

    转载请注明来源:https://www.cnblogs.com/hookjc/ unix下安装PHP的module,需要重新编译PHP,Windows下安装模板,只需将php.ini里的配置打开相应的 ...

  2. 【转载收藏】使用Jacoco远程统计tomcat服务的代码覆盖率

    在做软件开发的时候经常会遇到做各种测试,这里介绍一种本人遇到的:代码覆盖率测试, 这个测试非常实用,能发现许多无效的模块和代码.强烈推荐!!!!! 网上好多资料都不全,而且没有详细的配置流程 本文将简 ...

  3. 接口里的default,static方法

    我们都知道接口里的变量默认隐含类型是public static final,也是就是说是常量.而方法默认类型是public abstract,所以接口的方法都是抽象方法,但是事实真的是这样吗? 我的P ...

  4. MySQL 主从复制与读写分离 (超详细图文并茂小白闭着眼睛都会做)

    MySQL 主从复制与读写分离 1.什么是读写分离 2.为什么要读写分离 3.什么时候要读写分离 4.主从复制与读写分离 5.mysql支持的复制类型 6.主从复制的工作过程 7.MySQL主从复制延 ...

  5. rpm与yum安装及管理程序

    安装及管理程序 1.Linux应用程序基础 2.RPM软件包管理工具 3.yum源仓库创建 1.应用程序与系统命令的关系如图:  典型应用程序的目录结构如图: 常见的软件包封装类型如图: 2.RPM包 ...

  6. Python编程知识

    继承->重写 class A(object): def __init__(self): print("super(B,self).__init__():运行A:init") ...

  7. [翻译]Introduction to JSON Web Tokens

    JWT: Json Web Tokens JWT是一种开放标准(RFC 7519),它定义了一种紧凑且独立的方式,用于将各方之间的信息安全地传输为JSON对象.因为它是经过数字签名的,所以该信息可以进 ...

  8. Solution -「Code+#4」「洛谷 P4370」组合数问题 2

    \(\mathcal{Description}\)   Link.   给定 \(n,k\),求 \(0\le b\le a\le n\) 的 \(\binom{a}{b}\) 的前 \(k\) 大. ...

  9. Git简单介绍以及使用入门

    Git Git:分布式版本控制系统, 此外还有 SVN (集中式版本控制系统) 下载地址(阿里云镜像) :CNPM Binaries Mirror (npmmirror.com) Git Bash : ...

  10. Process Doppelg&#228;nging

    进程注入:Process Doppelgänging   攻击者可以通过Process Doppelgänging将恶意代码注入到进程中,从而逃避基于进程的防护,并且进行可能的特权提升.Process ...