LightOj_1342 Aladdin and the Magical Sticks
题意:
地上有n种棍子, 其中有两种类型, 一种类型是可识别, 一种类型是不可识别, 每个棍子都有一个权值。
当你捡到可识别的, 那么你以后就不会再捡这个棍子, 如果是不可识别的, 那么你有可能还会捡。
问将所有棍子收集完的权值的期望。
思路:
此题借鉴参考了此篇文章:Aladdin and the Magical Sticks
首先, 这个题初看起来, 和LightOj 1027 A Dangerous Maze有点像, 只不过, 这里是要将所有的门都走遍。
先引入一个经典的问题:
邮票收集问题(Coupon Collector Problem)WiKi资料
求解邮票收集问题时, 由概率求期望时需要用到几何分布期望, 因此这里给出了几何分布期望的证明过程。 很简洁明了, 还有大量例子结合理解。
通过上面的问题, 我们可以假设, 我们现在面对的是一个n面的骰子, 骰子的每面都是随机出现的(相当于是不可识别的棍子), 求问将所有面都被看完所期望的投掷次数(假设只看最上面那一面)
那么, 问题的解就是:
H[n] = (1 + 1/2 + 1/3 + 1/4 + ... + 1/n), 这就是调和级数的前n项。
这个值近似等于欧拉常数约为:0.57721566490153286060651209。(不过这是一个当n接近无穷时的近似值, 并不能代替具体的H[n], 比如当 n = 1 || 2时)
而所求的是期望的权值, 根据期望的线性性质E(XY) = E(X)*E(Y)
所以, 总的权值期望就等价于 每次的权值期望 * 次数的期望。
n个面, 每个面至少出现一次的期望次数是:E(x) = n * H[n],那么, 某个指定的面至少出现一次的期望次数就是E(z) = E(x)/n = H[n]。
因此, 假设这n个棍子都是不可识别的时候所期望的权值为:
Ea = E(w) * E(x), E(w)为权值的期望 = 权值的平均值。
但是, 这n个棍子里还有一些是可以识别的, 因此还要减去多余的期望。
先来计算一下可识别的棍子所需要的期望的次数, 这个答案为1。
当有六个球在箱子里, 采用不放回抽样, 你将六个球抽出来所期望的次数是多少?这是一个固定的值, 为6。
因此, 每个棍子多出来的部分就是(H[n] - 1) * w[i]。w[i]为某个可识别的棍子的权值。
设, 所有棍子的权值平均值为Wn
假设有k个可识别的棍子, 其权值平均值为Wk
So , 答案为: Ea - Eb = Wn * n * H[n] - k * Wk * (H[n] - 1)
化简: E = (Wn * n - k * Wk) * H[n] + k * Wk。
代码:
#include <cmath>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <ctime>
#include <set>
#include <map>
#include <list>
#include <queue>
#include <string>
#include <vector>
#include <fstream>
#include <iterator>
#include <iostream>
#include <algorithm>
using namespace std;
#define LL long long
#define INF 0x3f3f3f3f
#define MOD 1000000007
#define eps 1e-6
#define MAXN 5050
#define MAXM 100
#define dd cout<<"debug"<<endl
#define pa {system("pause");}
#define p(x) printf("%d\n", x)
#define pd(x) printf("%.7lf\n", x)
#define k(x) printf("Case %d: ", ++x)
#define s(x) scanf("%d", &x)
#define sd(x) scanf("%lf", &x)
#define mes(x, d) memset(x, d, sizeof(x))
#define do(i, x) for(i = 0; i < x; i ++)
#define dod(i, x, l) for(i = x; i >= l; i --)
#define doe(i, x) for(i = 1; i <= x; i ++)
int n;
double h[MAXN];
void init()
{
h[] = ;
for(int i = ; i < MAXN; i ++)
h[i] = h[i - ] + 1.0 / i;
} int main()
{
int T;
int kcase = ;
init();
scanf("%d", &T);
while(T --)
{
scanf("%d", &n);
int a, b;
double ans = ;
for(int i = ; i < n; i ++)
{
scanf("%d %d", &a, &b);
ans += a * (b == ? : h[n]);
}
printf("Case %d: %.5lf\n", ++ kcase, ans);
}
return ;
}
LightOj_1342 Aladdin and the Magical Sticks的更多相关文章
- LightOJ 1342 Aladdin and the Magical Sticks [想法题]
题目链接 : http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=27050 --------------------------- ...
- LightOJ 1342 Aladdin and the Magical Sticks 期望(结论题)
题目传送门 题意:n根木棍,每根木棍都有一个权值,木棍有可识别的木棍和不可识别的木棍,每次抽取木棍时,会累加权值,如果是可识别的木棍就不放回,不可识别的木棍就放回,问每根木棍至少被抽取一次,权值的期望 ...
- KUANGBIN带你飞
KUANGBIN带你飞 全专题整理 https://www.cnblogs.com/slzk/articles/7402292.html 专题一 简单搜索 POJ 1321 棋盘问题 //201 ...
- kuangbin 带你飞 概率期望
正推不行就逆推! 经典问题:生日悖论 换成其互斥事件:m个人, 每个人生日都不相同的概率 ≤ 0.5 时最小人数. 这就是邮票收集问题的变形:每个邮票至少出现一次的概率 小于等于 0.5 邮票收集问题 ...
- [kuangbin带你飞]专题1-23题目清单总结
[kuangbin带你飞]专题1-23 专题一 简单搜索 POJ 1321 棋盘问题POJ 2251 Dungeon MasterPOJ 3278 Catch That CowPOJ 3279 Fli ...
- ACM--[kuangbin带你飞]--专题1-23
专题一 简单搜索 POJ 1321 棋盘问题POJ 2251 Dungeon MasterPOJ 3278 Catch That CowPOJ 3279 FliptilePOJ 1426 Find T ...
- Codeforces Round #654 (Div. 2) A~E 题解
LINK:CF R 654 div2 前言:F题是一个线段树分类讨论的题目 比赛的时候没看 赛后感觉没什么意思 所以咕掉了. 记事:第一次笼统的写一场比赛的题目 可能是我这场比赛打的太差了 题目不难 ...
- Codeforces Round #654 (Div. 2)
比赛链接:https://codeforces.com/contest/1371 A. Magical Sticks 题意 有 $n$ 根小棍,长度从 $1$ 到 $n$,每次可以将两根小棍连接起来, ...
- LightOJ 1341 - Aladdin and the Flying Carpet (唯一分解定理 + 素数筛选)
http://lightoj.com/volume_showproblem.php?problem=1341 Aladdin and the Flying Carpet Time Limit:3000 ...
随机推荐
- JQuery Kendo UI使用技巧总结
Kendo UI开发总结 By Gloomyfish on 2013-04-25 在Grid中支持分页刷新: scrollable: {virtual : true }, 在Gr ...
- [AngularJS] angular-formly: Extending Types
Extending types is one of the ways that makes angular-formly help you keep your Angular forms DRY. W ...
- DevExpress的GridView设置特定行的样式
GridView控件绑定事件: gridView_SampleData.CustomDrawCell += gridView_SampleData_CustomDrawCell; 根据自定义逻辑来改变 ...
- C#中的两种debug方法
这篇文章主要介绍了C#中的两种debug方法介绍,本文讲解了代码用 #if DEBUG 包裹.利用宏定义两种方法,需要的朋友可以参考下 第一种:需要把调试方法改成debug代码用 #if DEBU ...
- .net数据传递的格式
1 Object 返回数据库查询后的单个值 public object LoadBusinessScopeById(int id) { string sql = "select [name] ...
- Handler 原理分析和使用之HandlerThread
前面已经提到过Handler的原理以及Handler的三种用法.这里做一个非常简单的一个总结: Handler 是跨线程的Message处理.负责把Message推送到MessageQueue和处理. ...
- AsyncTask理解- Day36or37
AsyncTask理解- Day36or37 mobile 5.0 1.手机归属地查询 AtoolsActivity Assets目录特点 该文件是原生文件,不会对里面的文件进行编码 该文件只支持读取 ...
- 1.redis.3.2 下载,安装、配置、使用 - 1
1.下载: 2.使用: 挤压之后,使用cmd执行,如下图 redis-server--service-installredis.windows.conf,执行安装 提示成功之后,剩下就好办了, 这 ...
- SQL SERVER 高级编程 - 自定义函数 拾忆
每个人都很忙,但是花10分钟复习下,总结下基础东西还是很有益处的. 背景: 总结一句,使用简便,还能递归,是的SQL更简洁,相对比一大堆的关联语句,而且关联一大堆还不一定实现特定功能.而且共用部分可以 ...
- Mac Zip命令
mac终端命令 zip -[parameter] [yourName].zip someFileOrDiectory -q 表示不显示压缩进度状态 -r 表示子目录子文件全部压缩为zip //这部比较 ...