LightOj_1342 Aladdin and the Magical Sticks
题意:
地上有n种棍子, 其中有两种类型, 一种类型是可识别, 一种类型是不可识别, 每个棍子都有一个权值。
当你捡到可识别的, 那么你以后就不会再捡这个棍子, 如果是不可识别的, 那么你有可能还会捡。
问将所有棍子收集完的权值的期望。
思路:
此题借鉴参考了此篇文章:Aladdin and the Magical Sticks
首先, 这个题初看起来, 和LightOj 1027 A Dangerous Maze有点像, 只不过, 这里是要将所有的门都走遍。
先引入一个经典的问题:
邮票收集问题(Coupon Collector Problem)WiKi资料
求解邮票收集问题时, 由概率求期望时需要用到几何分布期望, 因此这里给出了几何分布期望的证明过程。 很简洁明了, 还有大量例子结合理解。
通过上面的问题, 我们可以假设, 我们现在面对的是一个n面的骰子, 骰子的每面都是随机出现的(相当于是不可识别的棍子), 求问将所有面都被看完所期望的投掷次数(假设只看最上面那一面)
那么, 问题的解就是:
H[n] = (1 + 1/2 + 1/3 + 1/4 + ... + 1/n), 这就是调和级数的前n项。
这个值近似等于欧拉常数约为:0.57721566490153286060651209。(不过这是一个当n接近无穷时的近似值, 并不能代替具体的H[n], 比如当 n = 1 || 2时)
而所求的是期望的权值, 根据期望的线性性质E(XY) = E(X)*E(Y)
所以, 总的权值期望就等价于 每次的权值期望 * 次数的期望。
n个面, 每个面至少出现一次的期望次数是:E(x) = n * H[n],那么, 某个指定的面至少出现一次的期望次数就是E(z) = E(x)/n = H[n]。
因此, 假设这n个棍子都是不可识别的时候所期望的权值为:
Ea = E(w) * E(x), E(w)为权值的期望 = 权值的平均值。
但是, 这n个棍子里还有一些是可以识别的, 因此还要减去多余的期望。
先来计算一下可识别的棍子所需要的期望的次数, 这个答案为1。
当有六个球在箱子里, 采用不放回抽样, 你将六个球抽出来所期望的次数是多少?这是一个固定的值, 为6。
因此, 每个棍子多出来的部分就是(H[n] - 1) * w[i]。w[i]为某个可识别的棍子的权值。
设, 所有棍子的权值平均值为Wn
假设有k个可识别的棍子, 其权值平均值为Wk
So , 答案为: Ea - Eb = Wn * n * H[n] - k * Wk * (H[n] - 1)
化简: E = (Wn * n - k * Wk) * H[n] + k * Wk。
代码:
#include <cmath>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <ctime>
#include <set>
#include <map>
#include <list>
#include <queue>
#include <string>
#include <vector>
#include <fstream>
#include <iterator>
#include <iostream>
#include <algorithm>
using namespace std;
#define LL long long
#define INF 0x3f3f3f3f
#define MOD 1000000007
#define eps 1e-6
#define MAXN 5050
#define MAXM 100
#define dd cout<<"debug"<<endl
#define pa {system("pause");}
#define p(x) printf("%d\n", x)
#define pd(x) printf("%.7lf\n", x)
#define k(x) printf("Case %d: ", ++x)
#define s(x) scanf("%d", &x)
#define sd(x) scanf("%lf", &x)
#define mes(x, d) memset(x, d, sizeof(x))
#define do(i, x) for(i = 0; i < x; i ++)
#define dod(i, x, l) for(i = x; i >= l; i --)
#define doe(i, x) for(i = 1; i <= x; i ++)
int n;
double h[MAXN];
void init()
{
h[] = ;
for(int i = ; i < MAXN; i ++)
h[i] = h[i - ] + 1.0 / i;
} int main()
{
int T;
int kcase = ;
init();
scanf("%d", &T);
while(T --)
{
scanf("%d", &n);
int a, b;
double ans = ;
for(int i = ; i < n; i ++)
{
scanf("%d %d", &a, &b);
ans += a * (b == ? : h[n]);
}
printf("Case %d: %.5lf\n", ++ kcase, ans);
}
return ;
}
LightOj_1342 Aladdin and the Magical Sticks的更多相关文章
- LightOJ 1342 Aladdin and the Magical Sticks [想法题]
题目链接 : http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=27050 --------------------------- ...
- LightOJ 1342 Aladdin and the Magical Sticks 期望(结论题)
题目传送门 题意:n根木棍,每根木棍都有一个权值,木棍有可识别的木棍和不可识别的木棍,每次抽取木棍时,会累加权值,如果是可识别的木棍就不放回,不可识别的木棍就放回,问每根木棍至少被抽取一次,权值的期望 ...
- KUANGBIN带你飞
KUANGBIN带你飞 全专题整理 https://www.cnblogs.com/slzk/articles/7402292.html 专题一 简单搜索 POJ 1321 棋盘问题 //201 ...
- kuangbin 带你飞 概率期望
正推不行就逆推! 经典问题:生日悖论 换成其互斥事件:m个人, 每个人生日都不相同的概率 ≤ 0.5 时最小人数. 这就是邮票收集问题的变形:每个邮票至少出现一次的概率 小于等于 0.5 邮票收集问题 ...
- [kuangbin带你飞]专题1-23题目清单总结
[kuangbin带你飞]专题1-23 专题一 简单搜索 POJ 1321 棋盘问题POJ 2251 Dungeon MasterPOJ 3278 Catch That CowPOJ 3279 Fli ...
- ACM--[kuangbin带你飞]--专题1-23
专题一 简单搜索 POJ 1321 棋盘问题POJ 2251 Dungeon MasterPOJ 3278 Catch That CowPOJ 3279 FliptilePOJ 1426 Find T ...
- Codeforces Round #654 (Div. 2) A~E 题解
LINK:CF R 654 div2 前言:F题是一个线段树分类讨论的题目 比赛的时候没看 赛后感觉没什么意思 所以咕掉了. 记事:第一次笼统的写一场比赛的题目 可能是我这场比赛打的太差了 题目不难 ...
- Codeforces Round #654 (Div. 2)
比赛链接:https://codeforces.com/contest/1371 A. Magical Sticks 题意 有 $n$ 根小棍,长度从 $1$ 到 $n$,每次可以将两根小棍连接起来, ...
- LightOJ 1341 - Aladdin and the Flying Carpet (唯一分解定理 + 素数筛选)
http://lightoj.com/volume_showproblem.php?problem=1341 Aladdin and the Flying Carpet Time Limit:3000 ...
随机推荐
- chrome 全屏无法退出
起因:chrome 按F11 全屏后,再按F11 死活无法退出全屏,关掉后,再打开chrome,自动全屏,F11无法退出全屏 系统:centos 6.3 解决:找到 chrome的用户数据存储目录,( ...
- Cloud Foundry中gorouter对StickySession的支持
Cloud Foundry作为业界出众的PaaS平台,在应用的可扩展性方面做得很优秀. 详细来讲,在一个应用须要横向伸展的时候,Cloud Foundry能够轻松地帮助用户做好伸展工作,也就是创建出一 ...
- [MySQL5.6] 一个简单的optimizer_trace示例
[MySQL5.6] 一个简单的optimizer_trace示例 前面已经介绍了如何使用和配置MySQL5.6中optimizer_trace(点击博客),本篇我们以一个相对简单的例子来跟踪op ...
- android.util.Log说明和android 像素说明
1. android.util.Log常用的方法有以下5个:Log.v() Log.d() Log.i() Log.w() 以及 Log.e() .根据首字母对应VERBOSE,DEBUG,INFO, ...
- Android开发之ViewPager实现轮播图(轮播广告)效果的自定义View
最近开发中需要做一个类似京东首页那样的广告轮播效果,于是采用ViewPager自己自定义了一个轮播图效果的View. 主要原理就是利用定时任务器定时切换ViewPager的页面. 效果图如下: 主页面 ...
- Div+css中ul ol li dl dt dd使用
ol 有序列表.<ol><li>……</li><li>……</li><li>……</li></ol>表现 ...
- LCA问题
基本概念 LCA:树上的最近公共祖先,对于有根树T的两个结点u.v,最近公共祖先LCA(T,u,v)表示一个结点x,满足x是u.v的祖先且x的深度尽可能大. RMQ:区间最小值查询问题.对于长度为n的 ...
- php并发处理
最近某个项目用php生成文件,但是由于文件量太大,单个进程生成需要很长的时间,所以想并发进行处理. 网上查找了下相关的资料,php本身是没有多线程的概念的,那就只能用多进程了,再找资料却是 ...
- AndroidStudio1.4 manifest 中注册Activity时的错误提示解决办法
问题截图如下: 解决办法截图如下: 1: File->setting->Editor->Language Injections到如下界面 2:双击右侧选中的Item进入编辑界面 3: ...
- 通过调整表union all的顺序优化SQL
操作系统:Windows XP 数据库版本:SQL Server 2005 今天遇到一个SQL,过滤条件是自动生成的,因此,没法通过调整SQL的谓词达到优化的目的,只能去找SQL中的“大表”.有一个视 ...