Graphs 

Two ingredients

1. vertices (nodes) v

2. edges(undirected or directed)

Examples: road networks, the web, social networks

The minimum Cut problem

Input: undirected graph G = (V, E)   (parallel edges allowed)

Goal: compute a cut with fewest number of Crossing edges (a min cut)

Sparse vs. Dense Graphs

let n = # of vertices, m = # of edges

In most applications, m is Omega(n) and O(n^2)

In a "sparse graph", m is O(n) or close to it

In a "dense graph",  m is closer to Theta(n^2)

Two ways to represent a Graph

1. The Adjacency Matrix

2. The Adjacency List

Which one is better?  Depends on graph density and operation needed.

Random Contraction Algorithm

while there are more than 2 vertices:

-pick a remaining edge(u, v) uniformly at random

-merge(or "contract") u and v into a single vertex

-remove self-loops

return cut represented by final 2 vertices

Karger's Min-Cut Algorithm -------Random Contraction Algorithm(Python code):

import random
import copy
import time def contract(ver, e):
while len(ver) > 2: #create a new graph every time (not efficient)
ind = random.randrange(0, len(e))
[u, v] = e.pop(ind) #pick a edge randomly
ver.remove(v) #remove v from vertices
newEdge = list()
for i in range(len(e)):
if e[i][0] == v: e[i][0] = u
elif e[i][1] == v: e[i][1] = u
if e[i][0] != e[i][1]: newEdge.append(e[i]) # remove self-loops
e = newEdge
return(len(e)) #return the number of the remained edges if __name__ == '__main__':
f = open('kargerMinCut.txt')
_f = list(f)
edges = list() #initialize vertices and edges
vertices = list()
for i in range(len(_f)): #got 2517 different edges
s = _f[i].split()
vertices.append(int(s[0]))
for j in range(1, len(s)):
if [int(s[j]), int(s[0])] not in edges:
edges.append([int(s[0]), int(s[j])]) result = list()
starttime = time.clock()
for i in range(2000): #we take n^2logn times so that the Pr(allfail) <= 1/n where n is the number of vertics
v = copy.deepcopy(vertices) #notice: deepcopy
e = copy.deepcopy(edges)
r = contract(v, e)
result.append(r)
endtime = time.clock()
#print(result)
print(min(result))
print(endtime - starttime)
												

Graphs and Minimum Cuts(Karger's Min-Cut Algorithm)的更多相关文章

  1. ZOJ 2753 Min Cut (Destroy Trade Net)(无向图全局最小割)

    题目大意 给一个无向图,包含 N 个点和 M 条边,问最少删掉多少条边使得图分为不连通的两个部分,图中有重边 数据范围:2<=N<=500, 0<=M<=N*(N-1)/2 做 ...

  2. 关于Yuri Boykov and Vladimir Kolmogorov 于2004年提出的max flow / min cut的算法的详解

    出处:http://blog.csdn.net/euler1983/article/details/5959622 算法优化algorithmgraphtree任务 这篇文章说的是Yuri Boyko ...

  3. 图的最小切隔问题Minimum Cuts

    前提条件是这样的:输入一个图(可以是有向图,也可以是无向图,允许平行边存在),我们要做的事情是将这个图切割成两个子图,(切割的定义:将图中的所有顶点分为两个集合A和B,要求这两个集合非空)假设这个图中 ...

  4. HDU 6214.Smallest Minimum Cut 最少边数最小割

    Smallest Minimum Cut Time Limit: 2000/2000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Oth ...

  5. HDU 6214 Smallest Minimum Cut(最少边最小割)

    Problem Description Consider a network G=(V,E) with source s and sink t. An s-t cut is a partition o ...

  6. Smallest Minimum Cut HDU - 6214(最小割集)

    Smallest Minimum Cut Time Limit: 2000/2000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Oth ...

  7. HDU - 6214:Smallest Minimum Cut(最小割边最小割)

    Consider a network G=(V,E) G=(V,E) with source s s and sink t t . An s-t cut is a partition of nodes ...

  8. HDU 6214 Smallest Minimum Cut 【网络流最小割+ 二种方法只能一种有效+hdu 3987原题】

    Problem Description Consider a network G=(V,E) with source s and sink t . An s-t cut is a partition ...

  9. HDU-6214 Smallest Minimum Cut(最少边最小割)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6214 Problem Description Consider a network G=(V,E) w ...

随机推荐

  1. ios 设置label的高度随着内容的变化而变化

    好吧 步骤1:创建label _GeRenJianJie = [[UILabel alloc]init]; 步骤2:设置label _GeRenJianJie.textColor = RGBAColo ...

  2. UWP textbox 只能输入数字

    private void Testbox_TextChanged(object sender, TextChangedEventArgs e) {    var textbox = (TextBox) ...

  3. 使用Gulp构建本地开发Web服务器

    前端模拟ajax,就需要配置web服务器(apache,iis,nginx),有点麻烦 代码有一点点修改,就需要F5刷新页面很麻烦 Gulp + Gulp-connect + watch + live ...

  4. storm简介[ZZ]

    场景 伴随着信息科技日新月异的发展,信息呈现出爆发式的膨胀,人们获取信息的途径也更加多样.更加便捷,同时对于信息的时效性要求也越来越高.举个搜索 场景中的例子,当一个卖家发布了一条宝贝信息时,他希望的 ...

  5. 简单的背包变形HDU1203,HDU2955

    今天一直在写背包,不过中间停了一段时间在写shell. 一直在做01背包.今天做了这两题很相似的背包 首先是HDU1203 Speakless很早就想出国,现在他已经考完了所有需要的考试,准备了所有要 ...

  6. MVVM模式应用 之在ViewModel中使用NavigationService

    在ViewModel.cs页面中是不能使用NavigationService,那该怎么实现跳转呢? 其实在ViewModel中实现页面的跳转也很简单,下面的代码: using Microsoft.Ph ...

  7. 用linux的shell脚本把目录下面的所有文件的文件内容中的小写字母改成大写字母

    最近工作中,产品组的同事给出的数据里面都是小写字母 ,但是引擎组的同事要求他们拿到的从数据里面解析出的结构体里面存储的要都是大写结构,这让我们数据预处理组很尴尬啊,,所以在写了个这么样的脚本,在解析数 ...

  8. 简单学C——第六天

    指针    指针是c语言中很灵活的一个内容,当然,灵活的都是较难掌握的.不过,只要理解其实质,学习,运用指针还是一件很轻松的事情的. 首先理解,1.什么是指针? 在c语言中,指针也同Int ,doub ...

  9. Sharepoint 问题集锦 - 配置

    错误 在sharepoint designer中编辑List的表单的时候,提示soap:Server服务器无法处理请求. ---> 值不在预期的范围内. 解释: 这个是由于我在本地测试的时候,使 ...

  10. Delphi FireMonkey使用UniDAC 连接MySQL

    首次用Delphi XE6 开发安卓程序,并没有在网上找到连接远程MySQL服务器的文档,自己摸索一番,发现UniDAC控件新版本也已支持了FireMonkey下的开发.遂记下连接方法和大家分享. 1 ...