HDOJ 1032(POJ 1207) The 3n + 1 problem
Description
Problems in Computer Science are often classified as belonging to a certain class of problems (e.g., NP, Unsolvable, Recursive). In this problem you will be analyzing a property of an algorithm whose classification is not known for all possible inputs.
Consider the following algorithm:
1. input n
2. print n
3. if n = 1 then STOP
4. if n is odd then n <-- 3n+1
5. else n <-- n/2
6. GOTO 2
Given the input 22, the following sequence of numbers will be printed 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
It is conjectured that the algorithm above will terminate (when a 1 is printed) for any integral input value. Despite the simplicity of the algorithm, it is unknown whether this conjecture is true. It has been verified, however, for all integers n such that 0 < n < 1,000,000 (and, in fact, for many more numbers than this.)
Given an input n, it is possible to determine the number of numbers printed before the 1 is printed. For a given n this is called the cycle-length of n. In the example above, the cycle length of 22 is 16.
For any two numbers i and j you are to determine the maximum cycle length over all numbers between i and j.
Input
The input will consist of a series of pairs of integers i and j, one pair of integers per line. All integers will be less than 10,000 and greater than 0.
You should process all pairs of integers and for each pair determine the maximum cycle length over all integers between and including i and j.
Output
For each pair of input integers i and j you should output i, j, and the maximum cycle length for integers between and including i and j. These three numbers should be separated by at least one space with all three numbers on one line and with one line of output for each line of input. The integers i and j must appear in the output in the same order in which they appeared in the input and should be followed by the maximum cycle length (on the same line).
Sample Input
1 10
100 200
201 210
900 1000
Sample Output
1 10 20
100 200 125
201 210 89
900 1000 174
#include <stdio.h>
#include <stdlib.h>
int arr[1000010];
int suan(int x,int num){
if(x==1)
return num+1;
if(x%2==0)
suan(x/2,num+1);
else
suan(3*x+1,num+1);
}
int main(){
int m,n;
while(scanf("%d %d",&n,&m)==2){
int i;
bool First=true;
int maxx=0;
if(n>m){
n=n+m;
m=n-m;
n=n-m;
First=false;
}
for(i=n;i<=m;i++){
arr[i]=suan(i,0);
if(maxx<arr[i])
maxx=arr[i];
}
if(First)
printf("%d %d %d\n",n,m,maxx);
else{
printf("%d %d %d\n",m,n,maxx);
}
}
return 0;
}
HDOJ 1032(POJ 1207) The 3n + 1 problem的更多相关文章
- 01背包问题:Charm Bracelet (POJ 3624)(外加一个常数的优化)
Charm Bracelet POJ 3624 就是一道典型的01背包问题: #include<iostream> #include<stdio.h> #include& ...
- Scout YYF I(POJ 3744)
Scout YYF I Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 5565 Accepted: 1553 Descr ...
- 广大暑假训练1(poj 2488) A Knight's Journey 解题报告
题目链接:http://vjudge.net/contest/view.action?cid=51369#problem/A (A - Children of the Candy Corn) ht ...
- Games:取石子游戏(POJ 1067)
取石子游戏 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 37662 Accepted: 12594 Descripti ...
- BFS 或 同余模定理(poj 1426)
题目:Find The Multiple 题意:求给出的数的倍数,该倍数是只由 1与 0构成的10进制数. 思路:nonzero multiple 非零倍数 啊. 英语弱到爆炸,理解不了题意... ...
- 并查集+关系的传递(poj 1182)
题目:食物链 题意:给定一些关系.判断关系的正确性,后给出的关系服从之前的关系: 思路:难点不在并查集,在于关系的判断,尤其是子节点与根节点的关系的判断: 这个关系看似没给出,但是给出子节点与父节点的 ...
- 昂贵的聘礼(poj 1062)
Description 年轻的探险家来到了一个印第安部落里.在那里他和酋长的女儿相爱了,于是便向酋长去求亲.酋长要他用10000个金币作为聘礼才答应把女儿嫁给他.探险家拿不出这么多金币,便请求酋长降低 ...
- Collecting Bugs(POJ 2096)
Collecting Bugs Time Limit: 10000MS Memory Limit: 64000K Total Submissions: 3064 Accepted: 1505 ...
- Power string(poj 2406)
题目大意,给出一个字符串s,求最大的k,使得s能表示成a^k的形式,如 abab 可以表示成(ab)^2: 方法:首先 先求kmp算法求出next数组:如果 len mod (len-next[len ...
随机推荐
- Udacity(优达学城)300块红包优惠券
纳米学位:来自硅谷的名企官方课程 7天免费试用结束后,在"我的教室->设置->纳米学位->续费"页面上的优惠码区域,输入AF55BA53,立即减300元:
- 写一个最简单的 Server
import java.net.*;import java.io.*;public class Server{ public static void main(String[] args) throw ...
- Android - 广播机制和Service
花了几天,想实现定位功能,使用的是百度的服务,有时真的很无奈,就是一小小个问题,就能折腾好几天. 首先,我是在主线程(Fragment)中单独进行定位,发现不起作用. 然后我想使用Service和广播 ...
- OC加强-day01
#pragma mark - 00 知识回顾 1.@property + 类型 + 属性名 :执行的结果 1>在类的.m里面生成一个_属性名的属性 2>生成 _属性名 这个属性的set/g ...
- iOS军火库-好用的ActionSheetView
GitHub地址 一个自定义的ActionSheetView,支持显示标题,默认选中,使用block回调. 使用说明 [GLActionSheet showWithDataSource:@[@&quo ...
- [C#学习]在多线程中如何调用Winform[转]
问题的产生: 我的WinForm程序中有一个用于更新主窗口的工作线程(worker thread),但文档中却提示我不能在多线程中调用这个form(为什么?),而事实上我在调用时程序常常会崩掉.请问如 ...
- JavaScript学习心得(二)
一选择DOCTYPE DOCTYPE是一种标准通用标记语言的文档类型声明,目的是告诉标准通用标记语言解析器使用什么样的文档类型定义(DTD)来解析文档. 网页从DOCTYPE开始,即<!DOCT ...
- js插件动态加载js、css解决方案
最近因为工作需要做了一个js自动导入的插件,一开始很天真的以为动态创建个script添加到head中就ok了,试了之后才发现了问题,就是如果同时引入了多个js文件,而且后一个文件中用到了前一个文件中的 ...
- C语言-06数据类型-05 总结
一.基本数据类型1.int1> long int.long:8个字节 %ld2> short int.short:2个字节 %d %i3> unsigned int.unsigned ...
- 2016022604 - redis命令介绍
Redis keys命令用于在Redis的管理键. Redis keys命令使用语法如下所示: redis最新版本目前是3.0.7 redis 127.0.0.1:6379> COMMAND K ...