题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=1568

分析:一道数学题

找出斐波那契数列的通项公式,再利用对数的性质就可得到前几位的数

斐波那契通项公式如下:

取完对数后(记fn为第n个数)

log10(fn)=-0.5*log10(5.0)+((double)n)*log(f)/log(10.0)+log10(1-((1-√5)/(1+√5))^n)  其中f=(sqrt(5.0)+1.0)/2.0;

最后取对数的小数部分就可得最终结果

代码如下:

 #include<cstdio>
#include<cmath>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const double f=(sqrt(5.0)+)/2.0;
int fi[];
int main()
{
int n,i;
double bit;
fi[]=;fi[]=fi[]=;
for(i=;i<=;i++)
{
fi[i]=fi[i-]+fi[i-];
}
while(scanf("%d",&n)!=EOF)
{
if(n<=)
printf("%d\n",fi[n]);
else{
bit=-0.5*log10(5.0)+((double)n)*log(f)/log(10.0);
bit=bit-(int)bit;
bit=pow(10.0,bit);
while(bit<)bit*=;
printf("%d\n",(int)bit);
}
}
return ;
}

HDU 1568 Fibonacci 数学= = 开篇的更多相关文章

  1. HDU 1568 Fibonacci【求斐波那契数的前4位/递推式】

    Fibonacci Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Proble ...

  2. hdu 1568 Fibonacci 快速幂

    Fibonacci Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Proble ...

  3. hdu 1568 Fibonacci 数学公式

    Fibonacci Problem Description 2007年到来了.经过2006年一年的修炼,数学神童zouyu终于把0到的Fibonacci数列(f[0]=0,f[1]=1;f[i] = ...

  4. [hdu 1568] Fibonacci数列前4位

    2007年到来了.经过2006年一年的修炼,数学神童zouyu终于把0到100000000的Fibonacci数列(f[0]=0,f[1]=1;f[i] = f[i-1]+f[i-2](i>=2 ...

  5. HDU 1568 Fibonacci

    题解:首先,对于小于10000的斐波那契数,我们直接计算,当大于10000时,用公式,由于只要输出前四位,所以不用考虑浮点数的问题,算出其取log的结果: tmp=(log(sq5/5)+n*log( ...

  6. HDU 1568 Fibonacci(大数前4位)

    转载自:http://blog.csdn.net/thearcticocean/article/details/47615241 分析:x=1234567.求其前四位数: log10(x)=log10 ...

  7. hdu 1568 (log取对数 / Fib数通项公式)

    hdu 1568 (log取对数 / Fib数通项公式) 2007年到来了.经过2006年一年的修炼,数学神童zouyu终于把0到100000000的Fibonacci数列 (f[0]=0,f[1]= ...

  8. HDU 3117 Fibonacci Numbers(围绕四个租赁斐波那契,通过计++乘坐高速动力矩阵)

    HDU 3117 Fibonacci Numbers(斐波那契前后四位,打表+取对+矩阵高速幂) ACM 题目地址:HDU 3117 Fibonacci Numbers 题意:  求第n个斐波那契数的 ...

  9. hdu 3117 Fibonacci Numbers 矩阵快速幂+公式

    斐波那契数列后四位可以用快速幂取模(模10000)算出.前四位要用公式推 HDU 3117 Fibonacci Numbers(矩阵快速幂+公式) f(n)=(((1+√5)/2)^n+((1-√5) ...

随机推荐

  1. 使用SqlBulkCopy批量插入多条数据进入表中

    由于工作中项目需求结算一次生成一批相同批次号的数据插入一个表中,然后再通过另一页面展示出来,所以需要用到一次性插入一批数据,所以就采用了SqlBulkCopy插入一批数据 1 public stati ...

  2. freemaker小练习

    public class TestFreemaker extends HttpServlet{    // 负责管理FreeMarker模板的Configuration实例      private ...

  3. apache的MPM机制-prefork

    apache是基于模块化设计的. 关于基础的服务,也采用了模块化的设计,但是这个模块是具有排他性的,同一时间只能有一个得到调用. MPM模块(multi processing module) 多处理模 ...

  4. open()函数

    STDOUT_FILENO            1 标准输入 STDIN_FILENO             0 标准输出 STDERR_FILENO         2 标准错误 在/proc目 ...

  5. HTML5列表

    <!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type" content ...

  6. 使用Chrome DevTools的Timeline分析页面性能

    随着webpage可以承载的表现形式更加多样化,通过webpage来实现更多交互功能,构建web应用程序已经成为很多产品的首要选择.这种方式拥有非常明显的优势:跨平台.开发便捷.便于部署和维护等等,但 ...

  7. html渐隐轮播

    这是我之前用的时候从一个模板中下载下来用的,现在又用到了,我又重新找了一遍,为防止我下次用到忘记,特写下此文: 下载插件:jquery-2.1.4.min.js和slider.js 首页轮播页面首页i ...

  8. php内存申请和销毁

    内存申请 ZendMM使用自身heap层申请内存追踪结果: ZEND_ASSIGN_SPEC_CV_CONST_HANDLER (......) -> ALLOC_ZVAL(......) -& ...

  9. 读取Android APK文件签名的方法

    在微信开放平台等申请API key 和secret时经常要用到apk文件签名,那么如何读取呢? 下面贴一下相关读取源码: 一共两个文件MainActivity和MD5, package com.lcg ...

  10. mysql可视化管理工具

    1.navicat for mysql 2.navicat premium 3.HeidiSQL 4.MySQLWorkbench