A Round Peg in a Ground Hole(判断是否是凸包,点是否在凸包内,圆与多边形的关系)
| Time Limit: 1000MS | Memory Limit: 10000K | |
| Total Submissions: 4628 | Accepted: 1434 |
Description
A recent factory run of computer desks were flawed when an automatic grinding machine was mis-programmed. The result is an irregularly shaped hole in one piece that, instead of the expected circular shape, is actually an irregular polygon. You need to figure out whether the desks need to be scrapped or if they can be salvaged by filling a part of the hole with a mixture of wood shavings and glue.
There are two concerns. First, if the hole contains any protrusions (i.e., if there exist any two interior points in the hole that, if connected by a line segment, that segment would cross one or more edges of the hole), then the filled-in-hole would not be structurally sound enough to support the peg under normal stress as the furniture is used. Second, assuming the hole is appropriately shaped, it must be big enough to allow insertion of the peg. Since the hole in this piece of wood must match up with a corresponding hole in other pieces, the precise location where the peg must fit is known.
Write a program to accept descriptions of pegs and polygonal holes and determine if the hole is ill-formed and, if not, whether the peg will fit at the desired location. Each hole is described as a polygon with vertices (x1, y1), (x2, y2), . . . , (xn, yn). The edges of the polygon are (xi, yi) to (xi+1, yi+1) for i = 1 . . . n − 1 and (xn, yn) to (x1, y1).
Input
Line 1 < nVertices > < pegRadius > < pegX > < pegY >
number of vertices in polygon, n (integer)
radius of peg (real)
X and Y position of peg (real)
n Lines < vertexX > < vertexY >
On a line for each vertex, listed in order, the X and Y position of vertex The end of input is indicated by a number of polygon vertices less than 3.
Output
HOLE IS ILL-FORMED if the hole contains protrusions
PEG WILL FIT if the hole contains no protrusions and the peg fits in the hole at the indicated position
PEG WILL NOT FIT if the hole contains no protrusions but the peg will not fit in the hole at the indicated position
Sample Input
5 1.5 1.5 2.0
1.0 1.0
2.0 2.0
1.75 2.0
1.0 3.0
0.0 2.0
5 1.5 1.5 2.0
1.0 1.0
2.0 2.0
1.75 2.5
1.0 3.0
0.0 2.0
1
Sample OutputHOLE IS ILL-FORMED
PEG WILL NOT FIT 题意:给n个点的坐标,以及一个圆的圆心和半径。
判断这n个点能否形成凸包,若不能输出“HOLE IS ILL-FORMED”,否则,再判断圆心以及整个圆是否在凸多边形内; 思路: 分三步;
先形成一个封闭的多边形,
1.判断是否是凸包,循环取相邻的两条边,作叉乘,若结果为负说明不是凸包; 2.判断圆心是否在凸多边形内, 用环顾法:
设圆心为P,逐条枚举n边形的边AB,利用 
计算PA和PB的夹角,最后求和得到的就是环顾角。
(1) 圆心在多边形内部时,环顾角=±360
(2) 圆心在多边形外部时,环顾角=0
(3) 圆心在多边形边上时(不包括顶点),环顾角=±180
(4) 圆心在多边形顶点时,环顾角为(0,360)之间的任意角,其实就是圆心所在的顶点的两条邻接边的夹角。
3.判断圆与多边形的关系;
当圆与多边形每条边的距离都小于半径时,说明圆在多边形内部。
#include<stdio.h>
#include<string.h>
#include<math.h>
const double eps = 1e-;
const double PI = 3.1415926535898;
int cmp(double x)
{
if(fabs(x) < eps)
return ;
if(x > )
return ;
return -;
}
int n;//多边形点的个数
double r;//钉子半径 struct Point
{
double x,y;
Point (){}
Point(double a,double b):x(a),y(b) {}
}point[],p;//p为钉子坐标
//叉乘
double det(double x1,double y1,double x2,double y2)
{
return x1*y2-x2*y1;
}
//分别以a、b和 c、d为端点的两条线段的叉乘
double edge_det(Point a,Point b,Point c,Point d)
{
return det(b.x-a.x,b.y-a.y,d.x-c.x,d.y-c.y);
}
//点乘
double dot(double x1,double y1,double x2,double y2)
{
return x1*x2 + y1*y2;
}
//分别以a、p和 b、p为端点的两条线段的点乘
double edge_dot(const Point &p, const Point &a, const Point &b)
{
return dot(a.x-p.x,a.y-p.y,b.x-p.x,b.y-p.y);
}
//两点间的距离
double dis(const Point &a, const Point &b)
{
return sqrt((a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y));
}
//向量PA和PB 间的夹角
double cal_angle(const Point &a, const Point &b, const Point &p)
{
double res = edge_dot(p,a,b);
double L1 = dis(a,p);
double L2 = dis(b,p);
return acos(res/(L1*L2));
} bool is_convex_hull()//判断是否为凸包,任意两相临边作叉乘,若结果为负说明不是凸包;
{
double base = ;
for(int i = ; i < n; i++)
{
double tmp = cmp(edge_det(point[i],point[i+],point[i+],point[i+]));
if(!base)
base = tmp;
if(base * tmp < )
return false;
}
return true;
}
bool in_convex_hull()//判断圆心是否在凸包内
{
double angle = ;
for(int i = ; i <= n; i++)
{
if(cmp(edge_det(p,point[i],p,point[i+])) >= )
angle += cal_angle(point[i],point[i+],p);
else angle -= cal_angle(point[i],point[i+],p);
}
if(cmp(angle) == )//在多边形外部
return false;
if(cmp(angle+PI) == || cmp(angle-PI) == )//在多边形边上,不包括顶点。
{
if(cmp(r) == )
return true;
}
if(cmp(angle+*PI) == || cmp(angle-*PI) == )//在多边形内部;
return true;
else//在多边形顶点上;
{
if(cmp(r) == )
return true;
}
return false;
}
bool is_fit()//判断以r为半径的圆是否在凸包内
{
for(int i = ; i < n; i++)
{
double res = fabs(edge_det(point[i],p,point[i+],p)/dis(point[i],point[i+]));
if(cmp(res-r) < )
return false;
}
return true;
}
int main()
{
while(~scanf("%d",&n) && n >= )
{
scanf("%lf %lf %lf",&r,&p.x,&p.y); for(int i = ; i < n; i++)
scanf("%lf %lf",&point[i].x,&point[i].y); point[n] = point[];
point[n+] = point[]; if (!is_convex_hull())//不是一个凸包;
{
printf("HOLE IS ILL-FORMED\n");
continue;
}
bool f1 = in_convex_hull();
bool f2 = is_fit();
if(f1 && f2)
printf("PEG WILL FIT\n");
else printf("PEG WILL NOT FIT\n"); }
return ;
}
A Round Peg in a Ground Hole(判断是否是凸包,点是否在凸包内,圆与多边形的关系)的更多相关文章
- POJ 1584 A Round Peg in a Ground Hole 判断凸多边形,判断点在凸多边形内
A Round Peg in a Ground Hole Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5456 Acc ...
- POJ 1584 A Round Peg in a Ground Hole[判断凸包 点在多边形内]
A Round Peg in a Ground Hole Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 6682 Acc ...
- POJ 1584 A Round Peg in a Ground Hole 判断凸多边形 点到线段距离 点在多边形内
首先判断是不是凸多边形 然后判断圆是否在凸多边形内 不知道给出的点是顺时针还是逆时针,所以用判断是否在多边形内的模板,不用是否在凸多边形内的模板 POJ 1584 A Round Peg in a G ...
- poj1584 A Round Peg in a Ground Hole 判断多边形凹凸,点到线的距离【基础计算几何】
大致思路:首先对于所给的洞的点,判断是否是凸多边形,图形的输入和输出可以是顺时针或者逆时针,而且允许多点共线 Debug 了好几个小时,发现如下问题 判断三点是否共线,可用斜率公式判断 POINT p ...
- POJ 1584 A Round Peg in a Ground Hole(判断凸多边形,点到线段距离,点在多边形内)
A Round Peg in a Ground Hole Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 4438 Acc ...
- A Round Peg in a Ground Hole(凸包应用POJ 1584)
A Round Peg in a Ground Hole Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5684 Accepte ...
- POJ 1518 A Round Peg in a Ground Hole【计算几何=_=你值得一虐】
链接: http://poj.org/problem?id=1584 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...
- POJ 1584 A Round Peg in a Ground Hole【计算几何=_=你值得一虐】
链接: http://poj.org/problem?id=1584 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...
- POJ 1584:A Round Peg in a Ground Hole
A Round Peg in a Ground Hole Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5741 Acc ...
随机推荐
- mysql 异常处理实例
1. 语法: DECLARE handler_action HANDLER FOR condition_value [, condition_value] ... statement handler_ ...
- linux mysql命令
一: 1.启动 MySQL安装完成后启动文件mysql在/etc/init.d目录下,在需要启动时运行下面命令即可. /etc/init.d/mysql start 2.停止 /usr/bin/mys ...
- java格式处理工具类
import java.io.ByteArrayInputStream; import java.io.ByteArrayOutputStream; import java.io.IOExceptio ...
- Python之路【第十七篇】:Django之【进阶篇】
Python之路[第十七篇]:Django[进阶篇 ] Model 到目前为止,当我们的程序涉及到数据库相关操作时,我们一般都会这么搞: 创建数据库,设计表结构和字段 使用 MySQLdb 来连接 ...
- 判断浏览器是否支持FileReader
1.js代码: //判断浏览器是否支持FileReader if (typeof FileReader == "undefined") { document.write(" ...
- Adb connect监听指定的主机和端口/Adb监听Visual Studio Emulator for Android模拟器
语法: adb connect <host>[:<port>] 使用实例: adb connect //如果连接成功则返回 connected to 说明 在使用Visual ...
- js正则实现用户输入银行卡号的控制及格式化
//js正则实现用户输入银行卡号的控制及格式化 <script language="javascript" type="text/javascript"& ...
- 最简单的基于FFmpeg的移动端例子:IOS 视频解码器-保存
===================================================== 最简单的基于FFmpeg的移动端例子系列文章列表: 最简单的基于FFmpeg的移动端例子:A ...
- 【转】iOS使用NSMutableAttributedString实现富文本
iOS使用NSMutableAttributedString实现富文本 在iOS开发中,常常会有一段文字显示不同的颜色和字体,或者给某几个文字加删除线或下划线的需求.之前在网上找了一些资料,有的是重绘 ...
- asp.net 网站和asp.net Web 应用程序的一处不同
环境为:VS2008Team+.net3.5 asp.net 网站前台页面<%= %>这样绑定可以,asp.net Web 应用程序就不可以 示例代码如下: 1.asp.net网站 < ...