LRU原理

LRU(Least recently used,最近最少使用)算法根据数据的历史访问记录来进行淘汰数据,其核心思想是“如果数据最近被访问过,那么将来被访问的几率也更高”。

实现1

最常见的实现是使用一个链表保存缓存数据,详细算法实现如下: 
 
1. 新数据插入到链表头部; 
2. 每当缓存命中(即缓存数据被访问),则将数据移到链表头部; 
3. 当链表满的时候,将链表尾部的数据丢弃。 
分析 
【命中率】 
当存在热点数据时,LRU的效率很好,但偶发性的、周期性的批量操作会导致LRU命中率急剧下降,缓存污染情况比较严重。 
【复杂度】 
实现简单。 
【代价】 
命中时需要遍历链表,找到命中的数据块索引,然后需要将数据移到头部。

import java.util.ArrayList;
import java.util.Collection;
import java.util.LinkedHashMap;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
import java.util.Map; /**
* 类说明:利用LinkedHashMap实现简单的缓存, 必须实现removeEldestEntry方法,具体参见JDK文档
*
* @author dennis
*
* @param <K>
* @param <V>
*/
public class LRULinkedHashMap<K, V> extends LinkedHashMap<K, V> {
private final int maxCapacity; private static final float DEFAULT_LOAD_FACTOR = 0.75f; private final Lock lock = new ReentrantLock(); public LRULinkedHashMap(int maxCapacity) {
super(maxCapacity, DEFAULT_LOAD_FACTOR, true);
this.maxCapacity = maxCapacity;
} @Override
protected boolean removeEldestEntry(java.util.Map.Entry<K, V> eldest) {
return size() > maxCapacity;
}
@Override
public boolean containsKey(Object key) {
try {
lock.lock();
return super.containsKey(key);
} finally {
lock.unlock();
}
} @Override
public V get(Object key) {
try {
lock.lock();
return super.get(key);
} finally {
lock.unlock();
}
} @Override
public V put(K key, V value) {
try {
lock.lock();
return super.put(key, value);
} finally {
lock.unlock();
}
} public int size() {
try {
lock.lock();
return super.size();
} finally {
lock.unlock();
}
} public void clear() {
try {
lock.lock();
super.clear();
} finally {
lock.unlock();
}
} public Collection<Map.Entry<K, V>> getAll() {
try {
lock.lock();
return new ArrayList<Map.Entry<K, V>>(super.entrySet());
} finally {
lock.unlock();
}
}
}

实现2

LRUCache的链表+HashMap实现 

传统意义的LRU算法是为每一个Cache对象设置一个计数器,每次Cache命中则给计数器+1,而Cache用完,需要淘汰旧内容,放置新内容时,就查看所有的计数器,并将最少使用的内容替换掉。

它的弊端很明显,如果Cache的数量少,问题不会很大, 但是如果Cache的空间过大,达到10W或者100W以上,一旦需要淘汰,则需要遍历所有计算器,其性能与资源消耗是巨大的。效率也就非常的慢了。 
它的原理: 将Cache的所有位置都用双连表连接起来,当一个位置被命中之后,就将通过调整链表的指向,将该位置调整到链表头的位置,新加入的Cache直接加到链表头中。 
这样,在多次进行Cache操作后,最近被命中的,就会被向链表头方向移动,而没有命中的,而想链表后面移动,链表尾则表示最近最少使用的Cache。 
当需要替换内容时候,链表的最后位置就是最少被命中的位置,我们只需要淘汰链表最后的部分即可。 
上面说了这么多的理论, 下面用代码来实现一个LRU策略的缓存。 
非线程安全,若实现安全,则在响应的方法加锁。

import java.util.HashMap;
import java.util.Map.Entry;
import java.util.Set; public class LRUCache<K, V> { private int currentCacheSize;
private int CacheCapcity;
private HashMap<K,CacheNode> caches;
private CacheNode first;
private CacheNode last; public LRUCache(int size){
currentCacheSize = 0;
this.CacheCapcity = size;
caches = new HashMap<K,CacheNode>(size);
} public void put(K k,V v){
CacheNode node = caches.get(k);
if(node == null){
if(caches.size() >= CacheCapcity){ caches.remove(last.key);
removeLast();
}
node = new CacheNode();
node.key = k;
}
node.value = v;
moveToFirst(node);
caches.put(k, node);
} public Object get(K k){
CacheNode node = caches.get(k);
if(node == null){
return null;
}
moveToFirst(node);
return node.value;
} public Object remove(K k){
CacheNode node = caches.get(k);
if(node != null){
if(node.pre != null){
node.pre.next=node.next;
}
if(node.next != null){
node.next.pre=node.pre;
}
if(node == first){
first = node.next;
}
if(node == last){
last = node.pre;
}
} return caches.remove(k);
} public void clear(){
first = null;
last = null;
caches.clear();
} private void moveToFirst(CacheNode node){
if(first == node){
return;
}
if(node.next != null){
node.next.pre = node.pre;
}
if(node.pre != null){
node.pre.next = node.next;
}
if(node == last){
last= last.pre;
}
if(first == null || last == null){
first = last = node;
return;
} node.next=first;
first.pre = node;
first = node;
first.pre=null; } private void removeLast(){
if(last != null){
last = last.pre;
if(last == null){
first = null;
}else{
last.next = null;
}
}
}
@Override
public String toString(){
StringBuilder sb = new StringBuilder();
CacheNode node = first;
while(node != null){
sb.append(String.format("%s:%s ", node.key,node.value));
node = node.next;
} return sb.toString();
} class CacheNode{
CacheNode pre;
CacheNode next;
Object key;
Object value;
public CacheNode(){ }
} public static void main(String[] args) { LRUCache<Integer,String> lru = new LRUCache<Integer,String>(3); lru.put(1, "a"); // 1:a
System.out.println(lru.toString());
lru.put(2, "b"); // 2:b 1:a
System.out.println(lru.toString());
lru.put(3, "c"); // 3:c 2:b 1:a
System.out.println(lru.toString());
lru.put(4, "d"); // 4:d 3:c 2:b
System.out.println(lru.toString());
lru.put(1, "aa"); // 1:aa 4:d 3:c
System.out.println(lru.toString());
lru.put(2, "bb"); // 2:bb 1:aa 4:d
System.out.println(lru.toString());
lru.put(5, "e"); // 5:e 2:bb 1:aa
System.out.println(lru.toString());
lru.get(1); // 1:aa 5:e 2:bb
System.out.println(lru.toString());
lru.remove(11); // 1:aa 5:e 2:bb
System.out.println(lru.toString());
lru.remove(1); //5:e 2:bb
System.out.println(lru.toString());
lru.put(1, "aaa"); //1:aaa 5:e 2:bb
System.out.println(lru.toString());
} }

【算法】—— LRU算法的更多相关文章

  1. 缓存淘汰算法--LRU算法

    1. LRU1.1. 原理 LRU(Least recently used,最近最少使用)算法根据数据的历史访问记录来进行淘汰数据,其核心思想是"如果数据最近被访问过,那么将来被访问的几率也 ...

  2. 近期最久未使用页面淘汰算法———LRU算法(java实现)

    请珍惜小编劳动成果,该文章为小编原创,转载请注明出处. LRU算法,即Last Recently Used ---选择最后一次訪问时间距离当前时间最长的一页并淘汰之--即淘汰最长时间没有使用的页 依照 ...

  3. 最近最久未使用页面淘汰算法———LRU算法(java实现)

    请珍惜小编劳动成果,该文章为小编原创,转载请注明出处. LRU算法,即Last Recently Used ---选择最后一次访问时间距离当前时间最长的一页并淘汰之--即淘汰最长时间没有使用的页 按照 ...

  4. 使用java.util.LinkedList模拟实现内存页面置换算法--LRU算法

    一,LRU算法介绍 LRU是内存分配中“离散分配方式”之分页存储管理方式中用到的一个算法.每个进程都有自己的页表,进程只将自己的一部分页面加载到内存的物理块中,当进程在运行过程中,发现某页面不在物理内 ...

  5. 缓存淘汰算法--LRU算法(转)

    (转自:http://flychao88.iteye.com/blog/1977653) 1. LRU1.1. 原理 LRU(Least recently used,最近最少使用)算法根据数据的历史访 ...

  6. 《算法 - Lru算法》

    一:概述 - LRU 用于管理缓存策略,其本身在 Linux/Redis/Mysql 中均有实现.只是实现方式不尽相同. - LRU 算法[Least recently used(最近最少使用)] - ...

  7. 【算法】LRU算法

    缓存一般存放的都是热点数据,而热点数据又是利用LRU(最近最久未用算法)对不断访问的数据筛选淘汰出来的. 出于对这个算法的好奇就查了下资料. LRU算法四种实现方式介绍 缓存淘汰算法 利用Linked ...

  8. Redis的LRU算法

    Redis的LRU算法 LRU算法背后的的思想在计算机科学中无处不在,它与程序的"局部性原理"很相似.在生产环境中,虽然有Redis内存使用告警,但是了解一下Redis的缓存使用策 ...

  9. Android图片缓存之Lru算法

    前言: 上篇我们总结了Bitmap的处理,同时对比了各种处理的效率以及对内存占用大小.我们得知一个应用如果使用大量图片就会导致OOM(out of memory),那该如何处理才能近可能的降低oom发 ...

  10. 操作系统 页面置换算法LRU和FIFO

    LRU(Least Recently Used)最少使用页面置换算法,顾名思义,就是替换掉最少使用的页面. FIFO(first in first out,先进先出)页面置换算法,这是的最早出现的置换 ...

随机推荐

  1. WEB前端 CSS(非布局)

    目录 WEB前端 CSS CSS引入方式 CSS结构 CSS选择器 直接选择器 组合选择器 分组选择器 也叫并集选择器 属性选择器 伪类选择器 伪元素选择器 CSS选择器是一个查找的过程,高效的查找影 ...

  2. react create-react-app 怎么添加sass

    一.先上官方文档 https://github.com/facebook/create-react-app/blob/master/packages/react-scripts/template/RE ...

  3. Vue脚手架搭建项目

    全局安装vue脚手架 $ npm install -g vue-cli 卸载方法 $ npm uninstall -g vue-cli 查看vue版本(注意:大写的V) $ vue -V 创建项目 $ ...

  4. 【20190415】JavaScript-事件流与stopPropagation()、stopImmediatePropagation()的误区解析

    这两天仔细看了一下MDN上关于事件流机制和相关方法的文档,发现有个很大的误区.过去我一直以为stopPropagation()就是用来阻止事件冒泡的,甚至很多博客和菜鸟教程上都是这样写的.但实际上文档 ...

  5. thymeleaf的配置

    1.在springboto项目中使用thymeleaf标签,必须先添加依赖,如下. <dependency> <groupId>org.springframework.boot ...

  6. vs文件上传失败--超过最大字符限制

    一.问题 在文件上传时,会遇到大文件上传失败. >F12查看报错网络请求返回结果 >问题分析 由于vs上传文件默认的字符大小控制. 二.解决方法 >在web.config中修改或添加 ...

  7. Java新知识系列 七

    抽象类和接口的区别和特点 java的JDK中包含的五个工具 编译型语言和解释型语言 Java和C++的区别` 常见的ASCII的值 Forward和Redirect之间的对比 Web Service ...

  8. Python使用Plotly绘图工具,绘制气泡图

    今天来讲讲如何使用Python 绘图工具,Plotly来绘制气泡图. 气泡图的实现方法类似散点图的实现.修改散点图中点的大小,就变成气泡图. 实现代码如下: import plotly as py i ...

  9. Python第七天 函数 函数参数 函数里的变量 函数返回值 多类型传值 函数递归调用 匿名函数 内置函数

    Python第七天   函数  函数参数   函数里的变量   函数返回值  多类型传值     函数递归调用   匿名函数   内置函数 目录 Pycharm使用技巧(转载) Python第一天   ...

  10. 使用cmd查看电脑连接过的wifi密码(二)

    上次写了一个查看wifi的bat文件(https://www.cnblogs.com/feiquan/p/9823402.html),发现有个问题就没法保存到记事本,而且还要处理不同的系统语言,这次重 ...