LRU原理

LRU(Least recently used,最近最少使用)算法根据数据的历史访问记录来进行淘汰数据,其核心思想是“如果数据最近被访问过,那么将来被访问的几率也更高”。

实现1

最常见的实现是使用一个链表保存缓存数据,详细算法实现如下: 
 
1. 新数据插入到链表头部; 
2. 每当缓存命中(即缓存数据被访问),则将数据移到链表头部; 
3. 当链表满的时候,将链表尾部的数据丢弃。 
分析 
【命中率】 
当存在热点数据时,LRU的效率很好,但偶发性的、周期性的批量操作会导致LRU命中率急剧下降,缓存污染情况比较严重。 
【复杂度】 
实现简单。 
【代价】 
命中时需要遍历链表,找到命中的数据块索引,然后需要将数据移到头部。

import java.util.ArrayList;
import java.util.Collection;
import java.util.LinkedHashMap;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
import java.util.Map; /**
* 类说明:利用LinkedHashMap实现简单的缓存, 必须实现removeEldestEntry方法,具体参见JDK文档
*
* @author dennis
*
* @param <K>
* @param <V>
*/
public class LRULinkedHashMap<K, V> extends LinkedHashMap<K, V> {
private final int maxCapacity; private static final float DEFAULT_LOAD_FACTOR = 0.75f; private final Lock lock = new ReentrantLock(); public LRULinkedHashMap(int maxCapacity) {
super(maxCapacity, DEFAULT_LOAD_FACTOR, true);
this.maxCapacity = maxCapacity;
} @Override
protected boolean removeEldestEntry(java.util.Map.Entry<K, V> eldest) {
return size() > maxCapacity;
}
@Override
public boolean containsKey(Object key) {
try {
lock.lock();
return super.containsKey(key);
} finally {
lock.unlock();
}
} @Override
public V get(Object key) {
try {
lock.lock();
return super.get(key);
} finally {
lock.unlock();
}
} @Override
public V put(K key, V value) {
try {
lock.lock();
return super.put(key, value);
} finally {
lock.unlock();
}
} public int size() {
try {
lock.lock();
return super.size();
} finally {
lock.unlock();
}
} public void clear() {
try {
lock.lock();
super.clear();
} finally {
lock.unlock();
}
} public Collection<Map.Entry<K, V>> getAll() {
try {
lock.lock();
return new ArrayList<Map.Entry<K, V>>(super.entrySet());
} finally {
lock.unlock();
}
}
}

实现2

LRUCache的链表+HashMap实现 

传统意义的LRU算法是为每一个Cache对象设置一个计数器,每次Cache命中则给计数器+1,而Cache用完,需要淘汰旧内容,放置新内容时,就查看所有的计数器,并将最少使用的内容替换掉。

它的弊端很明显,如果Cache的数量少,问题不会很大, 但是如果Cache的空间过大,达到10W或者100W以上,一旦需要淘汰,则需要遍历所有计算器,其性能与资源消耗是巨大的。效率也就非常的慢了。 
它的原理: 将Cache的所有位置都用双连表连接起来,当一个位置被命中之后,就将通过调整链表的指向,将该位置调整到链表头的位置,新加入的Cache直接加到链表头中。 
这样,在多次进行Cache操作后,最近被命中的,就会被向链表头方向移动,而没有命中的,而想链表后面移动,链表尾则表示最近最少使用的Cache。 
当需要替换内容时候,链表的最后位置就是最少被命中的位置,我们只需要淘汰链表最后的部分即可。 
上面说了这么多的理论, 下面用代码来实现一个LRU策略的缓存。 
非线程安全,若实现安全,则在响应的方法加锁。

import java.util.HashMap;
import java.util.Map.Entry;
import java.util.Set; public class LRUCache<K, V> { private int currentCacheSize;
private int CacheCapcity;
private HashMap<K,CacheNode> caches;
private CacheNode first;
private CacheNode last; public LRUCache(int size){
currentCacheSize = 0;
this.CacheCapcity = size;
caches = new HashMap<K,CacheNode>(size);
} public void put(K k,V v){
CacheNode node = caches.get(k);
if(node == null){
if(caches.size() >= CacheCapcity){ caches.remove(last.key);
removeLast();
}
node = new CacheNode();
node.key = k;
}
node.value = v;
moveToFirst(node);
caches.put(k, node);
} public Object get(K k){
CacheNode node = caches.get(k);
if(node == null){
return null;
}
moveToFirst(node);
return node.value;
} public Object remove(K k){
CacheNode node = caches.get(k);
if(node != null){
if(node.pre != null){
node.pre.next=node.next;
}
if(node.next != null){
node.next.pre=node.pre;
}
if(node == first){
first = node.next;
}
if(node == last){
last = node.pre;
}
} return caches.remove(k);
} public void clear(){
first = null;
last = null;
caches.clear();
} private void moveToFirst(CacheNode node){
if(first == node){
return;
}
if(node.next != null){
node.next.pre = node.pre;
}
if(node.pre != null){
node.pre.next = node.next;
}
if(node == last){
last= last.pre;
}
if(first == null || last == null){
first = last = node;
return;
} node.next=first;
first.pre = node;
first = node;
first.pre=null; } private void removeLast(){
if(last != null){
last = last.pre;
if(last == null){
first = null;
}else{
last.next = null;
}
}
}
@Override
public String toString(){
StringBuilder sb = new StringBuilder();
CacheNode node = first;
while(node != null){
sb.append(String.format("%s:%s ", node.key,node.value));
node = node.next;
} return sb.toString();
} class CacheNode{
CacheNode pre;
CacheNode next;
Object key;
Object value;
public CacheNode(){ }
} public static void main(String[] args) { LRUCache<Integer,String> lru = new LRUCache<Integer,String>(3); lru.put(1, "a"); // 1:a
System.out.println(lru.toString());
lru.put(2, "b"); // 2:b 1:a
System.out.println(lru.toString());
lru.put(3, "c"); // 3:c 2:b 1:a
System.out.println(lru.toString());
lru.put(4, "d"); // 4:d 3:c 2:b
System.out.println(lru.toString());
lru.put(1, "aa"); // 1:aa 4:d 3:c
System.out.println(lru.toString());
lru.put(2, "bb"); // 2:bb 1:aa 4:d
System.out.println(lru.toString());
lru.put(5, "e"); // 5:e 2:bb 1:aa
System.out.println(lru.toString());
lru.get(1); // 1:aa 5:e 2:bb
System.out.println(lru.toString());
lru.remove(11); // 1:aa 5:e 2:bb
System.out.println(lru.toString());
lru.remove(1); //5:e 2:bb
System.out.println(lru.toString());
lru.put(1, "aaa"); //1:aaa 5:e 2:bb
System.out.println(lru.toString());
} }

【算法】—— LRU算法的更多相关文章

  1. 缓存淘汰算法--LRU算法

    1. LRU1.1. 原理 LRU(Least recently used,最近最少使用)算法根据数据的历史访问记录来进行淘汰数据,其核心思想是"如果数据最近被访问过,那么将来被访问的几率也 ...

  2. 近期最久未使用页面淘汰算法———LRU算法(java实现)

    请珍惜小编劳动成果,该文章为小编原创,转载请注明出处. LRU算法,即Last Recently Used ---选择最后一次訪问时间距离当前时间最长的一页并淘汰之--即淘汰最长时间没有使用的页 依照 ...

  3. 最近最久未使用页面淘汰算法———LRU算法(java实现)

    请珍惜小编劳动成果,该文章为小编原创,转载请注明出处. LRU算法,即Last Recently Used ---选择最后一次访问时间距离当前时间最长的一页并淘汰之--即淘汰最长时间没有使用的页 按照 ...

  4. 使用java.util.LinkedList模拟实现内存页面置换算法--LRU算法

    一,LRU算法介绍 LRU是内存分配中“离散分配方式”之分页存储管理方式中用到的一个算法.每个进程都有自己的页表,进程只将自己的一部分页面加载到内存的物理块中,当进程在运行过程中,发现某页面不在物理内 ...

  5. 缓存淘汰算法--LRU算法(转)

    (转自:http://flychao88.iteye.com/blog/1977653) 1. LRU1.1. 原理 LRU(Least recently used,最近最少使用)算法根据数据的历史访 ...

  6. 《算法 - Lru算法》

    一:概述 - LRU 用于管理缓存策略,其本身在 Linux/Redis/Mysql 中均有实现.只是实现方式不尽相同. - LRU 算法[Least recently used(最近最少使用)] - ...

  7. 【算法】LRU算法

    缓存一般存放的都是热点数据,而热点数据又是利用LRU(最近最久未用算法)对不断访问的数据筛选淘汰出来的. 出于对这个算法的好奇就查了下资料. LRU算法四种实现方式介绍 缓存淘汰算法 利用Linked ...

  8. Redis的LRU算法

    Redis的LRU算法 LRU算法背后的的思想在计算机科学中无处不在,它与程序的"局部性原理"很相似.在生产环境中,虽然有Redis内存使用告警,但是了解一下Redis的缓存使用策 ...

  9. Android图片缓存之Lru算法

    前言: 上篇我们总结了Bitmap的处理,同时对比了各种处理的效率以及对内存占用大小.我们得知一个应用如果使用大量图片就会导致OOM(out of memory),那该如何处理才能近可能的降低oom发 ...

  10. 操作系统 页面置换算法LRU和FIFO

    LRU(Least Recently Used)最少使用页面置换算法,顾名思义,就是替换掉最少使用的页面. FIFO(first in first out,先进先出)页面置换算法,这是的最早出现的置换 ...

随机推荐

  1. Spring框架基础(上)

    spring是开源对轻量级框架 spring核心主要两部分 aop 面向切面编程,扩展功能不是修改源代码实现 aop采用横向抽取机制,取代了传统纵向继承体系重复代码(性能监视.事务管理.安全检查.缓存 ...

  2. [JS设计模式]:单例模式(1)

    什么是单例模式 所谓单例,就是一个类只有一个实例,实现的方法一般是先判断是否存在实例,如果存在就直接返回,如果不存在就创建了再返回.这样确保了一个类只有一个实例对象. 实现的单例有很多种方式,最简单的 ...

  3. 使用 CODING 进行 Spring Boot 项目的集成

    本文作者:CODING 用户 - 高文 持续集成 (Continuous integration) 是一种软件开发实践,即团队开发成员经常集成他们的工作,通过每个成员每天至少集成一次,也就意味着每天可 ...

  4. 林业有害生物监测系统(重庆宇创GIS)

    本文由重庆宇创GIS团队原创,转载请注明来源http://www.cnblogs.com/ycdigit/p/8916073.html 一.概述   林业有害生物监测信息平台(森林病虫害监测预警系统) ...

  5. DVWA 黑客攻防演练(二)暴力破解 Brute Froce

    暴力破解,简称"爆破".不要以为没人会对一些小站爆破.实现上我以前用 wordpress 搭建一个博客开始就有人对我的站点进行爆破.这是装了 WordfenceWAF 插件后的统计 ...

  6. 一文把samba相关的都说清楚

    1.前言 samba源码都一样,配置也也一样,各个不同linux版本,唯一不同的是对服务的启动方式不同.下面以ubuntu14.4为例,说明. 2. 安装samba samba的安装,可以源码安装,大 ...

  7. SQLServer之通过视图修改数据

    通过视图增删改数据注意事项 需要对目标表的 UPDATE.INSERT 或 DELETE 权限(取决于执行的操作). 如果视图引用多个基表,则不能删除行. 如果视图引用多个基表,只能更新属于单个基表的 ...

  8. CF_#478_Div.2_Hag's Khashba

    做的正儿八经的计算几何题不多,慢慢来吧. 题目描述: http://codeforces.com/contest/975/problem/E 大意就是说给你一个凸多边形,一开始1,2两点有钉子固定在墙 ...

  9. spark-2.4.0-hadoop2.7-简单操作

    1. 说明 本文基于:spark-2.4.0-hadoop2.7-高可用(HA)安装部署 2. 启动Spark Shell 在任意一台有spark的机器上执行 # --master spark://m ...

  10. SQLServer之删除约束

    使用SSMS数据库管理工具删除约束 1.连接数据库,选择数据表->展开键或者约束->选择要删除的约束->右键点击->选择删除. 2.在删除对象弹出框中->点击确定. 3. ...