用js简单实现一下迪克斯特拉算法
今天看书看到了迪克斯特拉算法,大概用js实现一下呢,计算最短路径。
首先,迪克斯特拉算法只适用于有向无环图,且没有负权重,本例关系图如下哦,数字为权重,emmmm,画得稍微有点丑~

//大概用js实现一下迪克斯特拉算法,计算最短路径
// (6)→ A → (1)
// ↑ ↑ ↓
// 起点 (3) 终点
// ↓ ↑ ↑
// (2) → B → (5)
//迪克斯特拉算法只适用于有向无环图,且没有负权重
//上图()内为权重
//散列表在js中表示为对象
var graph = {};//记录节点
graph.start = {};
graph.start.a = 6;//起点到达A点权重为6
graph.start.b = 2; graph.a = {};
graph.a.end = 1;
graph.b = {};
graph.b.end = 5;
graph.b.a = 3; graph.end = {}; var costs = {};//记录起点到各点权重
costs.a = 6;
costs.b = 2;
costs.end = '';//暂时不知道 var parents = {};//记录最短路径中各节点的父节点
parents.a = 'start';
parents.b = 'start';
parents.end = ''; var processed = {};//记录已处理过的节点 //找出开销最小的节点(方法比较多呢,随便写了一个)
function findLowestCostNode(costs) {
var value = '';
var node = '';
for(var key in costs) {
if(processed[key]) {
continue;
}
if(!value) {
value = costs[key];
node = key;
}else {
if(costs[key] && costs[key]<value) {
value = costs[key];
node = key;
}
}
}
return node;
} var node = findLowestCostNode(costs);//找出开销最小节点
while(node) {
var cost = costs[node];//当前最小开销
var neighbors = graph[node];//当前节点相邻节点
for(var n in neighbors) {
var newCost = cost + neighbors[n];//到达相邻节点的开销数
if (!costs[n]) {
costs[n] = newCost;
parents[n] = node;
}else {
if (costs[n] > newCost) {//检查相应节点开销数是否小于已知开销数
costs[n] = newCost;//更新相应节点开销数
parents[n] = node;//更新相应节点父节点
}
}
}
processed[node] = 1;;//记录已处理过节点
node = findLowestCostNode(costs);//更新最小节点继续循环
} console.log(costs['end']);//6 此处为最短路径开销
var line = [];
line.unshift('end');
printLine(parents['end']);
console.log(line);//["start", "b", "a", "end"] //使用递归打印出完整路径
function printLine(node) {
if( node != 'start') {
line.unshift(node);
printLine(parents[node]);
}else {
line.unshift('start');
}
}
看过的东西不使用就容易忘记,稍微记录一下,写法比较小白,大神们就自动忽略吧~
知道了新东西还真是一件有意思的事情~
用js简单实现一下迪克斯特拉算法的更多相关文章
- 广度优先搜索(BreadthFirstSearch)& 迪克斯特拉算法 (Dijkstra's algorithm)
BFS可回答两类问题: 1.从节点A出发,有前往节点B的路径吗? 2.从节点A出发,前往节点B的哪条路径经过的节点最少? BFS中会用到"队列"的概念.队列是一种先进先出(FIFO ...
- [算法导论]迪克斯特拉算法 @ Python
class Graph: def __init__(self): self.V = [] self.w = {} class Vertex: def __init__(self, x): self.k ...
- Dijkstra Algorithm 迪克特斯拉算法--Python
迪克斯拉特算法: 1.找出代价最小的节点,即可在最短时间内到达的节点: 2.更新节点的邻居的开销: 3.重复这个过程,直到图中的每个节点都这样做了: 4.计算最终路径. ''' 迪克斯特拉算法: 1. ...
- <经验杂谈>介绍Js简单的递归排列组合
最近在开发SKU模块的时候,遇到这样一个需求,某种商品有N(用未知数N来表示是因为规格的数组由用户制定且随时可以编辑的,所以对程序来说,它是一个未知数)类规格,每一类规格又有M个规格值,各种规格值的组 ...
- 算法与数据结构(六) 迪杰斯特拉算法的最短路径(Swift版)
上篇博客我们详细的介绍了两种经典的最小生成树的算法,本篇博客我们就来详细的讲一下最短路径的经典算法----迪杰斯特拉算法.首先我们先聊一下什么是最短路径,这个还是比较好理解的.比如我要从北京到济南,而 ...
- c/c++ 图的最短路径 Dijkstra(迪杰斯特拉)算法
c/c++ 图的最短路径 Dijkstra(迪杰斯特拉)算法 图的最短路径的概念: 一位旅客要从城市A到城市B,他希望选择一条途中中转次数最少的路线.假设途中每一站都需要换车,则这个问题反映到图上就是 ...
- 单源最短路径-迪杰斯特拉算法(Dijkstra's algorithm)
Dijkstra's algorithm 迪杰斯特拉算法是目前已知的解决单源最短路径问题的最快算法. 单源(single source)最短路径,就是从一个源点出发,考察它到任意顶点所经过的边的权重之 ...
- JS实现最短路径之弗洛伊德(Floyd)算法
弗洛伊德算法是实现最小生成树的一个很精妙的算法,也是求所有顶点至所有顶点的最短路径问题的不二之选.时间复杂度为O(n3),n为顶点数. 精妙之处在于:一个二重初始化,加一个三重循环权值修正,完成了所有 ...
- Java 迪杰斯特拉算法实现查找最短距离
迪杰斯特拉算法 迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题.迪杰斯特拉算法主要特点是 ...
随机推荐
- spring注解驱动开发
1.全图: 一.IOC容器部分 1.第一个初始化实例: @Configuration @ComponentScans @Bean("person") 注意: @repeatable ...
- 为期一周的C#学习状态与感受
我,女,28,有娃两岁.博客开张,发发牢骚,进入第二阶段. 我这个年龄我这个状态,我决定重拾以前放弃的行业,打听了很多相关工作的朋友和查阅了很多关于这个问题的网页,有两种声音在交奏,一边是去吧,趁现在 ...
- Java randomString
public static String randomString(int strLength) { Random rnd = ThreadLocalRandom.current(); StringB ...
- 前端开发【第三篇: JavaScript基础】
JavaScript是一门编程语言,浏览器内置了JavaScript语言的解释器,所以在浏览器上按照JavaScript语言的规则编写相应代码之,浏览器可以解释并做出相应的处理. 一.如何编写 1.J ...
- MNIST机器学习进阶
# -*- coding: utf-8 -*-"""Created on Wed Oct 17 08:49:28 2018 @author: Administrator& ...
- elasticsearch(4) 轻量搜索
一 空搜索 搜索API的最基础的形式是没有指定任何查询的空搜索 ,它简单地返回集群中所有索引下的所有文档: 示例 GET 127.0.0.1:9200/_search 响应 { , "tim ...
- Java - Java入门(2-1am)
第一讲.Java入门 1. 计算机语言是人和计算机进行交互的一种工具,人们通过使用计算机语言编写程序来向计算机施令,计算机则执行程序,并把结果输出给用户. 2. 机器语言:由0.1序列构成的指令码组成 ...
- Groovy学习笔记-Java 5新特性支持
1.枚举enum enum CoffeeSize{ SHORT, SMALL, MEDIUM, LARGE, MUG } def orderCoffee(size){ print "Coff ...
- HashMap(1.8)理解
先放一个流程图了解一下HashMap的put()操作: 1.HashMap底层采用数组.链表.红黑树来实现. 2.表的长度一定是2^n(便于快速计算hash值和扩展),若初始化时指定容量不满足,则Ha ...
- PAT—优化Java从控制台读取信息的速度
PAT对Scanner类很不友好,会花费大量时间,导致运行时间超时.可采用下列代码优化时间 BufferedReader bf = new BufferedReader(new InputStream ...