2019-04-08 16:59:23

1 学习规则(Learning Rule)

1.1 赫布学习规则(Hebb Learning Rule)

1949年,Hebb提出了关于神经网络学习机理的“突触修正”的假设:当神经元的前膜电位、后膜电位同时为正时,突触传导加强;电位相反时,突触传导减弱。根据次假设定义权值ω的调整方法,称该方法为Hebb学习规则。

Hebb学习规则中,学习信号等于神经元的输出:

r=f(WTj*X)

权值向量W调整公式:

ΔW=η*f(WTj*X)*X

权值向量W的分向量Δωij调整公式:

Δωj=η*f(WTj*X)*xj,j=0,1,2,…,n

为保证Hebb learning rule 的学习效率,对权值设置饱和值。

for examle:

1 参数设置

输入:X1=[1,-2,1.5]T、X1=[1,-0.5,-2]T、X1=[0,-1,-1]T,学习率 η=1,初始化权值W0=[0 0 0]T,传递函数使用hardlim。

2 计算步骤(即权值调整过程)

权值W1=W0+hardlim(W0T*X1)*X1=[1 -2 1.5];

权值W2=W1+hardlim(W1T*X2)*X2=[1 -2 1.5];

权值W3=W2+hardlim(W2T*X3)*X3=[1 -3 0.5];

1.2 感知器学习规则(Perceptron Leaning Rule)

1 感知器的学习规则

r=dj-oj

式中,dj为期望输出,oj=f(WjT*X)

感知器采用符号函数作为转移函数,则

f(WjT*X)=sgn(WjT*X)={1,WjT*X≥0;0,WjT*X<0}

由上式得权值调整公式

ΔWj=η*[dj-sgn(WjT*X)]*X

Δωj=η*[dj-sgn(WjT*X)]*xj

2 Hebb learning principle 和 Perceptron learning principle的不同之处

Hebb learning principle 采用输出结果作为权值调整的组成部分,Perceptron learning principle 采用误差作为权值调整的组成部分。

1.3 最小均方差学习规则(Least Mean Square Error Leaning Rule)

1.3.1 LMS学习规则特点

感知器学习规则训练的网络,其分类的判决边界往往距离各分类模式靠的比较近,这使得网络对噪声比较敏感;

LMS Learing Rule是均方误差最小,进而使得判决边界尽可能远离分类模式,增强了网络的抗噪声能力。

但LMS算法仅仅适用于单层的网络训练,当需要设计多层网络时,需要寻找新的学习算法,for example,Back Progation Nerual Network Algorithm。

1962年,Bernard Widrow 和 Marcian Hoff 提出Widrow-Hoff Learning Princple,该方法的特点是使实际神经元输出与期望输出之间的平方差最小,因此又称为Least Mean Square Erorr Princple。

LMS调整规则应用较为广泛:

1 信号处理

2 BP算法的引领者

1.3.2 LMS学习规则计算

LMS的学习信号

r=tj-WjT*X

权值调整量

ΔWj=η*(tj-WjT*X)*X

权值分量调整

Δωj=η*(tj-WjT*X)*xj,j=0,1,2,...,n

tj表示期望输出,WjT*X表示实际输出

1.3.2 MSE学习规则

均方差(MSE),是预测数据与原始数据的误差平方的和的均值

MSE=(∑(ti-ai)2)/n,其中i=1,2,...,n

Matlab中存在该函数,可以直接调用,e=[1 2 3],perf=mse(e)=(12+22+32)/n=4.66666667。

2 线性神经网络

2.1线性神经网路结构

1 参数设置

神经网络结构函数 Purelin

神经网络_线性神经网络 1 (Nerual Network_Linear Nerual Network 1)的更多相关文章

  1. 神经网络_线性神经网络 2 (Nerual Network_Linear Nerual Network 2)

    1 LMS 学习规则 1.1 LMS学习规则定义 MSE=(1/Q)*Σe2k=(1/Q)*Σ(tk-ak)2,k=1,2,...,Q 式中:Q是训练样本:t(k)是神经元的期望输出:a(k)是神经元 ...

  2. 神经网络_线性神经网络 3 (Nerual Network_Linear Nerual Network 3)

    1 LMS 学习规则_解方程组 1.1 LMS学习规则举例 X1=[0 0 1]T,t1=0:X2=[1 0 1]T,t2=0:X3=[0 1 1]T,t3=0:X1=[1 1 1]T,t1=1. 设 ...

  3. 单层感知机_线性神经网络_BP神经网络

    单层感知机 单层感知机基础总结很详细的博客 关于单层感知机的视频 最终y=t,说明经过训练预测值和真实值一致.下面图是sign函数 根据感知机规则实现的上述题目的代码 import numpy as ...

  4. 使用MindSpore的线性神经网络拟合非线性函数

    技术背景 在前面的几篇博客中,我们分别介绍了MindSpore的CPU版本在Docker下的安装与配置方案.MindSpore的线性函数拟合以及MindSpore后来新推出的GPU版本的Docker编 ...

  5. 『PyTorch』第四弹_通过LeNet初识pytorch神经网络_下

    『PyTorch』第四弹_通过LeNet初识pytorch神经网络_上 # Author : Hellcat # Time : 2018/2/11 import torch as t import t ...

  6. 自适应线性神经网络Adaline

    自适应线性神经网络Adaptive linear network, 是神经网络的入门级别网络. 相对于感知器, 采用了f(z)=z的激活函数,属于连续函数. 代价函数为LMS函数,最小均方算法,Lea ...

  7. RBF神经网络和BP神经网络的关系

    作者:李瞬生链接:https://www.zhihu.com/question/44328472/answer/128973724来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注 ...

  8. 神经网络与BP神经网络

    一.神经元 神经元模型是一个包含输入,输出与计算功能的模型.(多个输入对应一个输出) 一个神经网络的训练算法就是让权重(通常用w表示)的值调整到最佳,以使得整个网络的预测效果最好. 事实上,在神经网络 ...

  9. BZOJ_2460_[BeiJing2011]元素_线性基

    BZOJ_2460_[BeiJing2011]元素_线性基 Description 相传,在远古时期,位于西方大陆的 Magic Land 上,人们已经掌握了用魔 法矿石炼制法杖的技术.那时人们就认识 ...

随机推荐

  1. 【原创】大叔经验分享(49)hue访问hdfs报错/hue访问oozie editor页面卡住

    hue中使用hue用户(hue admin)访问hdfs报错: Cannot access: /. Note: you are a Hue admin but not a HDFS superuser ...

  2. spool_sqlldr

    --0.制表符chr(9) 换行符chr(10) 回车符chr(13) windows下批处理.bat linux下批处理.shset echo offset feedback offset page ...

  3. MySQL存储过程中的事务执行失败之后获取错误信息

    1.表结构: 2. 存储过程中: 代码如下: BEGINDECLARE CONTINUE HANDLER FOR SQLEXCEPTIONBEGINROLLBACK;GET DIAGNOSTICS C ...

  4. pycharm远程调试服务器

    1.下载专业版pycharm并激活 https://blog.csdn.net/weixin_39332299/article/details/79692283 2.创建项目,设置解释器时,选择SSH ...

  5. Linux基础-远程管理

    shutdown  选项  时间    关机/重新启动 -r 重新启动 不指定选项和参数,1分钟后关闭电脑 重启必须加-r 示例:  shutdown   -r now    now表示现在 shut ...

  6. mysql explain结果含义

    在SQL语句前面加上EXPLAIN即可 各字段含义 id SELECT识别符.这是SELECT的查询序列号 select_type SELECT类型,可以为以下任何一种: SIMPLE:简单SELEC ...

  7. AES CBC PKCS7 C# C++

    c++算法见:https://blog.csdn.net/csdn49532/article/details/50686222 c#:https://gitee.com/koastal/codes/6 ...

  8. dbus-launch

    NAME dbus-launch - Utility to start a message bus from a shell script dbus-launch - 从shell脚本启动一个消息总线 ...

  9. 编写一份好的 Vimrc

    编写一份好的 Vimrc 目录 如何 Vimrc 色彩 空白字符与制表符 UI 配置 搜索 折叠 移动 用户自定义的前缀快捷按键 插件CtrlP 启动配置 终端Tmux 自动命令及其分组 备份 自定义 ...

  10. kafka 客户端 consumer 配置参数

    1.Consumer Group 与 topic 订阅 每个Consumer 进程都会划归到一个逻辑的Consumer Group中,逻辑的订阅者是Consumer Group.所以一条message ...