Dijkstra算法是在图中寻找两顶点最短路径的算法。

    下面以下图有向图为例,说明其基本思想。

 

上图为转化为邻接矩阵存储:

    现在我要寻找1点到其他点的最短距离以及路径:

a)1点到各点的距离分别为:  0 1 12 无穷 无穷 无穷

b)从上述距离中寻找最小的距离,发现距离2点最近,那么选择2点作为“跳板”

 c) 1以2作跳板后到各个点的距离分别为(即必走1->2) : 0 1 10 4 无穷 无穷

往后的工作就是重复b) c)继续找最短的距离作为跳板,直到各个点都做过跳板为止。 那么最终这6个数字分别就是顶点1到各个点的最短距离。

有几个问题需要注意:

1. 步骤a)b)找到跳板后再得到c),需要改变的值只是以跳板做中间量后距离变短的值,比如说上述黄色两个部分的第三个位置,加了跳板后是10<没加跳板的12,这时候才需要改成10。假设加了跳板后的值反而比没加前变大了,那么保留原来的值。(这就是的dijkstra的“贪心算法”)。

2. 找跳板的时候只能从没做过跳板中的元素中取。

3.上述方法仅仅讲述了如何求得最短距离,并没有提最短路径,最短路径的实现方法将在过几天的代码中体现。

  

以下代码以图:

// Dijkstra.cpp : 定义控制台应用程序的入口点。
// #include "stdafx.h"
#include "stdlib.h"
#define M 999999
int a[][]={,,,,,,,
,,,,M,,M,
,M,,,M,,M,
,,M,,,M,M,
,M,,M,,,M,
,M,M,M,,,M,
,M,M,M,,M, };
int book[];
int dis[];
int i,j,k,u,min;
void dijsktra()
{
for(i=;i<=;i++)
{
dis[i]=a[][i];
book[i]=;
}
book[]=; //1点的初始化
for(i=;i<=;i++)
{
min=M;
for(j=;j<=;j++)
{
if(book[j]==&&dis[j]<min) //找当前最小距离
{min=dis[j];
u=j; }
}
book[u]=; for(k=;k<=;k++) //若跳板距离更短,那么选择跳板距离作为最短距离 即注1
{
if((dis[k])>(a[u][k]+dis[u])&&(a[u][k]<M)) //单独注意a[u][k],表示以u点做跳板,跳板到k的距离 巧妙利用了邻接表
dis[k]=dis[u]+a[u][k];
}
} for(i=;i<=;i++)
{
printf("%d ",dis[i]);
} } int _tmain(int argc, _TCHAR* argv[])
{
printf(" \n");
dijsktra();
system("pause");
return ;
}

未完待续,有路径输出的在加着注释 。

参考资料:

https://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html

http://lobert.iteye.com/blog/2315820

Dijkstra算法的C++实现的更多相关文章

  1. 求两点之间最短路径-Dijkstra算法

     Dijkstra算法 1.定义概览 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.D ...

  2. Dijkstra算法优先队列实现与Bellman_Ford队列实现的理解

    /* Dijkstra算法用优先队列来实现,实现了每一条边最多遍历一次. 要知道,我们从队列头部找到的都是到 已经"建好树"的最短距离以及该节点编号, 并由该节点去更新 树根 到其 ...

  3. 关于dijkstra算法的一点理解

    最近在准备ccf,各种补算法,图的算法基本差不多看了一遍.今天看的是Dijkstra算法,这个算法有点难理解,如果不深入想的话想要搞明白还是不容易的.弄了一个晚自习,先看书大致明白了原理,就根据书上的 ...

  4. 最短路模板(Dijkstra & Dijkstra算法+堆优化 & bellman_ford & 单源最短路SPFA)

    关于几个的区别和联系:http://www.cnblogs.com/zswbky/p/5432353.html d.每组的第一行是三个整数T,S和D,表示有T条路,和草儿家相邻的城市的有S个(草儿家到 ...

  5. Dijkstra算法(二)之 C++详解

    本章是迪杰斯特拉算法的C++实现. 目录 1. 迪杰斯特拉算法介绍 2. 迪杰斯特拉算法图解 3. 迪杰斯特拉算法的代码说明 4. 迪杰斯特拉算法的源码 转载请注明出处:http://www.cnbl ...

  6. Dijkstra算法(一)之 C语言详解

    本章介绍迪杰斯特拉算法.和以往一样,本文会先对迪杰斯特拉算法的理论论知识进行介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现. 目录 1. 迪杰斯特拉算法介绍 2. 迪杰斯特拉算法 ...

  7. 最短路问题Dijkstra算法

    Dijkstra算法可以解决源点到任意点的最短距离并输出最短路径 准备: 建立一个距离数组d[ n ],记录每个点到源点的距离是多少 建立一个访问数组v[ n ],记录每个点是否被访问到 建立一个祖先 ...

  8. dijkstra算法求最短路

    艾兹格·W·迪科斯彻 (Edsger Wybe Dijkstra,1930年5月11日~2002年8月6日)荷兰人. 计算机科学家,毕业就职于荷兰Leiden大学,早年钻研物理及数学,而后转为计算学. ...

  9. 数据结构之Dijkstra算法

    基本思想 通过Dijkstra计算图G中的最短路径时,需要指定起点s(即从顶点s开始计算). 此外,引进两个集合S和U.S的作用是记录已求出最短路径的顶点(以及相应的最短路径长度),而U则是记录还未求 ...

  10. ACM: HDU 1869 六度分离-Dijkstra算法

    HDU 1869六度分离 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Descri ...

随机推荐

  1. Ubuntu 18.04.1 下快速搭建 LNMP环境

    1.Nginx的安装 Nginx安装是属于最简单的,只需要在命令行执行 sudo apt-get install nginx 就能自动安装 Nginx,其中过程中需要 选择 Y/n 的选择Y就行了,当 ...

  2. web框架开发-Ajax

    Ajax简介 向服务器发送请求的4种方式 1.浏览器地址栏,默认get请求2.form表单: get请求 post请求3.a标签,默认get请求 4.Ajax 特点: 1 异步请求 2 局部刷新 方式 ...

  3. xcrun: error: unable to find utility "PackageApplication", not a developer tool or in PATH ​

    xcrun: error: unable to find utility "PackageApplication", not a developer tool or in PATH ...

  4. @EnableWebMvc,WebMvcConfigurationSupport,WebMvcConfigurer和WebMvcConfigurationAdapter区别

    @EnableWebMvc是什么 直接看源码,@EnableWebMvc实际上引入一个DelegatingWebMvcConfiguration. @Retention(RetentionPolicy ...

  5. 洛谷P4431

    题意翻译 题目大意: 给定一个n∗m的矩阵,每次你可以选择前进一格或转弯(90度),求在不出这个矩阵的情况下遍历全部格点所需最少转弯次数.有多组数据 输入格式: 第一行一个整数k,表示数据组数 以下k ...

  6. KeyError: 'Spider not found: test'

    Error Msg: File "c:\python36\lib\site-packages\scrapy\cmdline.py", line 157, in _run_comma ...

  7. flask(三)之Flask-SQLAlchemy

    01-介绍 Flask-SQLAlchemy是一个Flask扩展,简化了在Flask应用中使用SQLAlchemy的操作.SQLAlchemy提供了高层ORM,也提供了使用数据库原生SQL的低层功能. ...

  8. hdu4746 Mophues (莫比乌斯进阶)

    参考博客:https://blog.csdn.net/acdreamers/article/details/12871643 题意:满足1<=x<=n,1<=y<=m,并且gc ...

  9. PS制作黑暗墙面上的漂亮霓虹文字

    一.用ps软件打开砖墙背景素材. 二.复制一层,混合模式改为“正片叠底”,不透明度50%. 三.新建色相/饱和度调整图层,设置如下.打造夜间的气氛. 四.新建一个空白图层,设置前景色黑色.背景色白色, ...

  10. 数据库和SQL面试题基础知识(持续更新)

    数据库方面基础知识复习 常问小问题: 一.like查询大小写问题: sql查询结果去重 SELECT distinct name FROM 表:平均数avg 一.like查询大小写问题: ①用bina ...