POJ 3268 (dijkstra变形)
题目链接 :http://poj.org/problem?id=3268
Description
One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤ X ≤ N). A total of M (1 ≤ M ≤ 100,000) unidirectional (one-way roads connects pairs of farms; road i requires Ti (1 ≤ Ti ≤ 100) units of time to traverse.
Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow's return route might be different from her original route to the party since roads are one-way.
Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?
Input
Lines 2..M+1: Line i+1 describes road i with three space-separated integers: Ai, Bi, and Ti. The described road runs from farm Ai to farm Bi, requiring Ti time units to traverse.
Output
Sample Input
4 8 2
1 2 4
1 3 2
1 4 7
2 1 1
2 3 5
3 1 2
3 4 4
4 2 3
Sample Output
10
Hint
#include<cstdio>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
using namespace std;
const int N = 1e4+10;
int e[N][N],dis[N],book[N],ans[N];
int inf = 99999999;
int n,m,x,i,j,t1,t2,t3;
void disk(){
memset(dis,0,sizeof(dis));
for(i = 1; i <= n; i++){
dis[i] = e[x][i];
}
memset(book,0,sizeof(book));
book[x] = 1;
int min = inf,h;
for(i = 1; i <= n; i++){
min = inf;
for(j = 1; j <= n; j++){
if(book[j] == 0 && dis[j] < min){
min = dis[j];
h = j;
}
}
book[h] = 1;
for(int v = 1; v <= n; v++){
if(dis[v] > dis[h] + e[h][v]){
dis[v] = dis[h] + e[h][v];
}
}
}
}
void change(){ //倒置所有的边
for(i = 1; i <= n; i++){
for(j = 1; j <= i; j++){
swap(e[i][j],e[j][i]);
}
}
}
int main()
{
scanf("%d%d%d",&n,&m,&x);
memset(ans,0,sizeof(ans));
for(i = 1; i <= n; i++){
for(j = 1; j <= n; j++){
if(i == j){
e[i][j] = 0;
}
else{
e[i][j] = inf;
}
}
}
for(i = 1; i <= m; i++){
scanf("%d%d%d",&t1,&t2,&t3);
e[t1][t2] = t3;
}
disk();
for(i = 1; i <= n; i++){
ans[i] += dis[i];
}
change();
disk();
for(i = 1; i <= n; i++){
ans[i] += dis[i];
}
int max = 0;
for(i = 1; i <= n; i++){
if(max < ans[i] && ans[i] < inf){
max = ans[i];
}
}
printf("%d\n",max);
return 0;
}
POJ 3268 (dijkstra变形)的更多相关文章
- POJ 3268 Dijkstra+priority_queue或SPFA
思路:正向建边,一遍Dijkstra,反向建边,再一遍Dijkstra.ans加在一起输出最大值. (SPFA也行--) // by SiriusRen #include <queue> ...
- DIjkstra(反向边) POJ 3268 Silver Cow Party || POJ 1511 Invitation Cards
题目传送门 1 2 题意:有向图,所有点先走到x点,在从x点返回,问其中最大的某点最短路程 分析:对图正反都跑一次最短路,开两个数组记录x到其余点的距离,这样就能求出来的最短路以及回去的最短路. PO ...
- POJ.1797 Heavy Transportation (Dijkstra变形)
POJ.1797 Heavy Transportation (Dijkstra变形) 题意分析 给出n个点,m条边的城市网络,其中 x y d 代表由x到y(或由y到x)的公路所能承受的最大重量为d, ...
- POJ 3268 Silver Cow Party 最短路—dijkstra算法的优化。
POJ 3268 Silver Cow Party Description One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbe ...
- POJ 3268——Silver Cow Party——————【最短路、Dijkstra、反向建图】
Silver Cow Party Time Limit:2000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Su ...
- NYOJ 1248 海岛争霸(Dijkstra变形——最短路径最大权值)
题目链接: http://acm.nyist.net/JudgeOnline/problem.php?pid=1248 描述 神秘的海洋,惊险的探险之路,打捞海底宝藏,激烈的海战,海盗劫富等等.加勒比 ...
- POJ 3268 Silver Cow Party (最短路径)
POJ 3268 Silver Cow Party (最短路径) Description One cow from each of N farms (1 ≤ N ≤ 1000) convenientl ...
- 【lightoj-1002】Country Roads(dijkstra变形)
light1002:传送门 [题目大意] n个点m条边,给一个源点,找出源点到其他点的‘最短路’ 定义:找出每条通路中最大的cost,这些最大的cost中找出一个最小的即为‘最短路’,dijkstra ...
- POJ 3268 Silver Cow Party (双向dijkstra)
题目链接:http://poj.org/problem?id=3268 Silver Cow Party Time Limit: 2000MS Memory Limit: 65536K Total ...
随机推荐
- SSM框架中,controller的action返回参数给vue.js
在SSM框架中,controller的action中,返回的是视图,即jsp页面或是ModelAndView,若是通过axios给vue传值的话,需要转换为字符串或是user实体类对象. 使用@Res ...
- Web_0002:关于MongoDB的操作
1,启动moggdb服务端 打开cmd命令窗口进入到MongoDB的安装目录bin文件下: 如: cd /d F:\Program Files\mongodb\bin 执行如下命令(该命令窗口为 ...
- .NET面试题系列(十八)常用关键字
序言 const和readonly关键字 private protected public internal的区别 out ref out适合用在需要retrun多个返回值的地方,而ref则用在需要 ...
- Ajax简述
AJAX即“Asynchronous Javascript And XML”(异步JavaScript和XML),是指一种创建交互式网页应用的网页开发技术.AJAX = 异步 JavaScript和X ...
- 模拟赛20181016 dp
给出1-n的序列插入一个bst: 给出T组询问,包含n,h分别代表点数为n,高度为h的树,求所有插入顺序的合法方案数,模1e9+7 样例输入 1 2 1 样例输出 2 #include<bit ...
- NIPS2017-The neural hawks process
NIPS2017哪些论文值得关注 论文链接 1.首先这篇文章研究的是 event stream,什么是event stream呢 ? 假如你是一个医生,你每天会看到很多病人 ,对于每一个病人,你都有他 ...
- shell 批量远程主机执行命令
[yunwei@Y24-209 ~]$cat ls.sh #!/bin/bash ip55=`cat ip1` for i in $ip55;do ping -c 1 $i if [ $? -eq 0 ...
- 【1】学习C++时,一些零散知识点01
1.编程理念 学习从学习完C后,接触了C++,最重要的便是编程理念的转变.C缩重视的是结构化编程,面对一个较大的程序,就将他分解成小型.便于管理的任务,如果分解后的任务还是偏难过大的话,那将这个任务继 ...
- sql选择
关系型数据库遵循ACID规则 1.A (Atomicity) 原子性 原子性很容易理解,也就是说事务里的所有操作要么全部做完,要么都不做,事务成功的条件是事务里的所有操作都成功,只要有一个操作失败,整 ...
- Git学习(一):初始化仓库、添加文件、版本回退
目录 Git学习(一):初始化.添加文件.版本回退 初始化一个仓库 添加文件到Git仓库 版本回退 Git学习(一):初始化.添加文件.版本回退 初始化一个仓库 本文使用的命令行工具为cmder,部分 ...