机器学习之--线性回归sigmoid函数分类
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt import random
#sigmoid函数定义
def sigmoid(x):
# print('sigmoid:',x,1.0 / (1+math.exp(-x)))
return 1.0 / (1+ np.exp(-x))
#模拟数据
x = [-2,6,-2,7,-3,3,0,8,1,10,2,12,2,5,3,6,4,5,2,15,1,10,4,7,4,11,0,3,-1,4,1,5,3,11,4,5]
x = x * 100
#转换成两列的矩阵
x = np.array(x).reshape(-1,2)
# print('x:',x,len(x))
x1 = x[:,0]
x2 = x[:,1]
# print(x1,len(x1))
# print(x2)
y = [1,1,0,1,1,1,0,0,0,1,1,0,1,0,0,0,1,1]
y = y * 100
y = np.array(y).reshape(-1,1)
y1 = y[:,0]
print('len(y):',len(y)) # a = 0.1 #学习步长 alpha
o0 = 1 #线性参数
o1 = 1
o2 = 1
O0=[]
O1=[]
O2=[]
q=[]
result = []
#随机梯度下降求参
dataindex = list(range(len(y)))
for i in range(len(y)):
a = 6/(i+1) +0.01
num = random.randint(0, len(dataindex) - 1)
index = dataindex[num]
# print('index:',index)
# print(x[i],x[i][0])
w = o0 + o1 * x[index][0] +o2 * x[index][1]
# print('w:',w)
h = sigmoid(w)
error = y[index] - h
q.append(error)
# print(num,len(num_list))
del (dataindex[num])
# print(h,y[i])
o0 = o0 + a * error * 1 #梯度上升求最大似然估计的参数值
o1 = o1 + a * error * x[index][0]
o2 = o2 + a * error * x[index][1]
O0.append(o0)
O1.append(o1)
O2.append(o2)
print(o0,o1,o2)
#测试参数
test_x = [-2,6,-2,7,-3,3,0,8,1,10,2,12,2,5,3,6,4,5,2,15,1,10,4,7,4,11,0,3,-1,4,1,5,3,11,4,5]
test_y = [1,1,0,1,1,1,0,0,0,1,1,0,1,0,0,0,1,1]
yescount = 0
for i in range(len(test_y)):
test_w = o0 + o1 * x[i][0] +o2 * x[i][1]
test_h = sigmoid(test_w)
print('测试:',test_w,y[i])
if test_h < 0.5:
result = 0
else:
result = 1
if result == y[i]:
yescount += 1
# print('正确')
print('总共{}个,正确了{}个,正确率为:{}'.format(len(test_y),yescount,yescount/len(test_y))) #参数求好了画图
fig = plt.figure()
#第一幅数据散点和回归分割线
line_x = np.arange(-4,4,0.1) #横坐标
line_y = (-o0-o1*line_x) / o2 #分割线
ax2 = fig.add_subplot(221)
ax2.scatter(x1,x2,10*(y1+1),10*(y1+1)) #测试数据的散点图
plt.grid()
plt.plot(line_x,line_y,'y-')
#第二幅参数o1 o2 o3 的变化图
ax3 = fig.add_subplot(222)
plt.grid()
plt.plot(range(len(y)),O0,'r-')
plt.plot(range(len(y)),O1,'y-')
plt.plot(range(len(y)),O2,'b-')
#第三幅数据误差error图
ax4 = fig.add_subplot(223)
plt.plot(range(len(y)),q,'b-')
plt.show()

机器学习之--线性回归sigmoid函数分类的更多相关文章
- 逻辑回归和sigmoid函数分类
逻辑回归和sigmoid函数分类:容易欠拟合,分类精度不高,计算代价小,易于理解和实现 sigmoid函数与阶跃函数的区别在于:阶跃函数从0到1的跳跃在sigmoid函数中是一个逐渐的变化,而不是突变 ...
- 机器学习之sigmoid函数
先说一下,ML小白. 这是第一次写个人博客类似东西, 主要来说说看 sigmoid 函数,sigmoid函数是机器学习中的一个比较常用的函数,与之类似的还有softplus和softmax等函数, ...
- 机器学习_线性回归和逻辑回归_案例实战:Python实现逻辑回归与梯度下降策略_项目实战:使用逻辑回归判断信用卡欺诈检测
线性回归: 注:为偏置项,这一项的x的值假设为[1,1,1,1,1....] 注:为使似然函数越大,则需要最小二乘法函数越小越好 线性回归中为什么选用平方和作为误差函数?假设模型结果与测量值 误差满足 ...
- 线性模型-线性回归、Logistic分类
线性模型是机器学习中最简单的,最基础的模型结果,常常被应用于分类.回归等学习任务中. 回归和分类区别: 回归:预测值是一个连续的实数: 分类:预测值是离散的类别数据. 1. 线性模型做回归任务 ...
- 机器学习之线性回归---logistic回归---softmax回归
在本节中,我们介绍Softmax回归模型,该模型是logistic回归模型在多分类问题上的推广,在多分类问题中,类标签 可以取两个以上的值. Softmax回归模型对于诸如MNIST手写数字分类等问题 ...
- 斯坦福CS229机器学习课程笔记 part2:分类和逻辑回归 Classificatiion and logistic regression
Logistic Regression 逻辑回归 1.模型 逻辑回归解决的是分类问题,并且是二元分类问题(binary classification),y只有0,1两个取值.对于分类问题使用线性回归不 ...
- 机器学习之线性回归以及Logistic回归
1.线性回归 回归的目的是预测数值型数据的目标值.目标值的计算是通过一个线性方程得到的,这个方程称为回归方程,各未知量(特征)前的系数为回归系数,求这些系数的过程就是回归. 对于普通线性回归使用的损失 ...
- [ DLPytorch ] 线性回归&Softmax与分类模型&多层感知机
线性回归 基础知识 实现过程 学习笔记 批量读取 torch_data = Data.TensorDataset(features, labels) dataset = Data.DataLoader ...
- 机器学习 | 详解GBDT在分类场景中的应用原理与公式推导
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习专题的第31篇文章,我们一起继续来聊聊GBDT模型. 在上一篇文章当中,我们学习了GBDT这个模型在回归问题当中的原理.GBD ...
随机推荐
- windows10安装docker,运行jhipster-registry
1.官网下载windows版docker 2.设置bios 3.CMD进入到某个jhipster的工程目录,执行"docker-compose -f src/main/docker/jhip ...
- 各类聚类(clustering)算法初探
1. 聚类简介 0x1:聚类是什么? 聚类是一种运用广泛的探索性数据分析技术,人们对数据产生的第一直觉往往是通过对数据进行有意义的分组.很自然,首先要弄清楚聚类是什么? 直观上讲,聚类是将对象进行分组 ...
- linux 命令之文件读取,head, tail, tailf, sed
head 看文件的前100行head -100 filename tail/tailf查看文件的后100行tail -100 filename 或 tail -n 100 filename ta ...
- 实验二 Java面向对象程序设计 20175301李锦然实验报告
实验二 Java面向对象程序设计 实验内容 1. 初步掌握单元测试和TDD 2. 理解并掌握面向对象三要素:封装.继承.多态 3. 初步掌握UML建模 4. 熟悉S.O.L.I.D原则 5. 了解设计 ...
- Win10+Ubuntu18.04双系统安装
Win10+Ubuntu18.04 亲测UEFI启动模式双硬盘+双系统成功安装经验 https://blog.csdn.net/xrinosvip/article/details/80428133 分 ...
- 虚拟云主机创建多个站点方法(.htaccess实现)
阿里的普通版虚拟云主机最多只能建一个站点,但可以绑定多个域名.如果我们想创建2个或3个主机怎么办呢?难道需要再另外购买一台主机? 其实我们可以通过.htaccess文件来定义相关域名绑定对应的网站目录 ...
- Python核心编程笔记 第三章
3.1 语句和语法 3.1.1 注释( # ) 3.1.2 继续( \ ) 一般使用换行分隔,也就是说一行一个语句.一行过长的语句可以使用反斜杠( \ ) 分 ...
- Object Detection / Human Action Recognition 项目
https://towardsdatascience.com/real-time-and-video-processing-object-detection-using-tensorflow-open ...
- asp.netMVC4使用Bootstrap4
使用: 添加: <script src="../../Scripts/jquery-1.7.1.min.js" type="text/javascript" ...
- P5302 [GXOI/GZOI2019]特技飞行
题目地址:P5302 [GXOI/GZOI2019]特技飞行 这里是官方题解(by lydrainbowcat) 题意 给 \(10^5\) 条直线,给 \(x = st\) 和 \(x = ed\) ...