HDU 6321 Dynamic Graph Matching
HDU 6321 Dynamic Graph Matching (状压DP)
Problem C. Dynamic Graph Matching
Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Others)
Total Submission(s): 1796 Accepted Submission(s): 731Problem Description
In the mathematical discipline of graph theory, a matching in a graph is a set of edges without common vertices.
You are given an undirected graph with n vertices, labeled by 1,2,...,n. Initially the graph has no edges.
There are 2 kinds of operations :
- u v, add an edge (u,v) into the graph, multiple edges between same pair of vertices are allowed.
- u v, remove an edge (u,v), it is guaranteed that there are at least one such edge in the graph.
Your task is to compute the number of matchings with exactly k edges after each operation for k=1,2,3,...,n2. Note that multiple edges between same pair of vertices are considered different.Input
The first line of the input contains an integer T(1≤T≤10), denoting the number of test cases.
In each test case, there are 2 integers n,m(2≤n≤10,nmod2=0,1≤m≤30000), denoting the number of vertices and operations.
For the next m lines, each line describes an operation, and it is guaranteed that 1≤u<v≤n.Output
For each operation, print a single line containing n2 integers, denoting the answer for k=1,2,3,...,n2. Since the answer may be very large, please print the answer modulo 109+7.
Sample Input
1
4 8
+ 1 2
+ 3 4
+ 1 3
+ 2 4
- 1 2
- 3 4
+ 1 2
+ 3 4
Sample Output
1 0
2 1
3 1
4 2
3 1
2 1
3 1
4 2
题目解析
题意:给一个图有N个点和若干个询问,每个询问增或者删一条边,每个询问输出选择1~N/2条不相交的边的方案数。
题解:状压DP
代码
#include<bits/stdc++.h>
#define CLR(a,b) memset(a,b,sizeof(a))
using namespace std;
typedef long long ll;
const int mod = 1e9 + 7;
ll dp[1<<10];
ll ans[6];
int main()
{
// freopen("c.in","r",stdin);
// freopen("ans.txt","w",stdout);
int t,n,m,x,y,cnt;
ll tmp;
char s[2];
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&m);
CLR(ans,0);
CLR(dp,0);
dp[0] = 1;
for(int i = 1; i <= m; i++){
scanf("%s %d %d",s,&x,&y);
if( s[0] == '+'){
for(int i = 0;i < (1<<n); i++){
if((i&(1<<(x-1))) && (i&(1<<(y-1)))){
tmp = dp[i];
dp[i] = (dp[i] + dp[(i^(1<<(x-1))^(1<<(y-1)))])%mod;
cnt = 0;
for(int j = 0; j < n; j++){
if(i&(1<<j)) cnt++;
}
ans[cnt/2] = (ans[cnt/2] + (dp[i]-tmp)%mod + mod )%mod;
}
}
}
if( s[0] == '-'){
for(int i = 0;i < (1<<n); i++){
if((i&(1<<(x-1))) && (i&(1<<(y-1)))){
tmp = dp[i];
dp[i] = (dp[i]-dp[(i^(1<<(x-1))^(1<<(y-1)))] + mod)%mod;
cnt = 0;
for(int j = 0; j < n; j++){
if(i&(1<<j)) cnt++;
}
ans[cnt/2] = (ans[cnt/2]+(dp[i]-tmp)%mod + mod)%mod;
}
}
}
printf("%d",ans[1]%mod);
for(int i = 2; i <= n/2; i++){
printf(" %d",ans[i]%mod);
}
printf("\n");
}
}
return 0;
}
/*
1
4 8
+ 1 2
+ 3 4
+ 1 3
+ 2 4
- 1 2
- 3 4
+ 1 2
+ 3 4
*/
HDU 6321 Dynamic Graph Matching的更多相关文章
- hdu多校第3场C. Dynamic Graph Matching
Problem C. Dynamic Graph Matching Time Limit: / MS (Java/Others) Memory Limit: / K (Java/Others) Tot ...
- HDU6321 Dynamic Graph Matching【状压DP 子集枚举】
HDU6321 Dynamic Graph Matching 题意: 给出\(N\)个点,一开始没有边,然后有\(M\)次操作,每次操作加一条无向边或者删一条已经存在的边,问每次操作后图中恰好匹配\( ...
- HDU - 6321 Problem C. Dynamic Graph Matching (状压dp)
题意:给定一个N个点的零图,M次操作,添加或删除一条边,每一次操作以后,打印用1,2,...N/2条边构成的匹配数. 分析:因为N的范围很小,所以可以把点的枚举状态用二进制表示集合.用一维数组dp[S ...
- 【hdu 6321】Dynamic Graph Matching
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] DP 设f[i][j]表示前i个操作,已经匹配了的点的状态集合为j的方案数 对于+操作 有两种情况. 1.这条边作为匹配的边 2.这 ...
- HDU6321 Dynamic Graph Matching (杭电多校3C)
给出一些点集,然后对于每一次要求给出的这些点集里的1,2,3,4,5,6....n/2的匹配数, dp[i][j] 表示到第i次操作里点集为j的匹配数,然后我每次加入一条边u-v,我的状态就是 dp[ ...
- [HDU6321]Dynamic Graph Matching(DP)
题意:给定一个n个点的无向图,开始没有边,然后m个操作,每次加边或者删边,每次操作后输出正好k个边的匹配数k=1,2,3,...n/2,n<=10,m<=30000 可以发现,n<= ...
- 论文阅读笔记(十七)【ICCV2017】:Dynamic Label Graph Matching for Unsupervised Video Re-Identification
Introduction 文章主要提出了 Dynamic Graph Matching(DGM)方法,以非监督的方式对多个相机的行人视频中识别出正确匹配.错误匹配的结果.本文主要思想如下图: 具体而言 ...
- Deep Learning of Graph Matching 阅读笔记
Deep Learning of Graph Matching 阅读笔记 CVPR2018的一篇文章,主要提出了一种利用深度神经网络实现端到端图匹配(Graph Matching)的方法. 该篇文章理 ...
- Dynamic Route Matching Vue路由(1)
Dynamic Route Matching 动态的 路由 匹配 Very often we will need to map routes with the given pattern to the ...
随机推荐
- Codeforces 1101G(线性基)
题目链接 题意 将序列尽可能分成多段使得任意$x \geq 1$段内的所有元素的异或和大于$0$问最多多少段 思路 首先,如果所有元素异或和等于$0$答案显然为$-1$,否则构造整个序列的线性基,这个 ...
- SQL Server - DISTINCT
http://www.runoob.com/sql/sql-distinct.html 只选出不同的值,过滤掉重复的值.
- Illegal invocation with document.querySelector [duplicate]
document.querySelectorAll赋给其它变量时, 为什么要.bind(document)? https://stackoverflow.com/questions/12637061/ ...
- mybatis基础知识
一.什么是Mybatis 这里借用官网的一句话介绍什么是mybatis:MyBatis 是一款优秀的持久层框架,它支持定制化 SQL.存储过程以及高级映射.MyBatis 避免了几乎所有的 JDBC ...
- c4b和c4f的区别
1. cc.c4b的参数直接填rgba的值. 2 .cc.c4f(r,g,b,透明度),把rgb值填进去,会发现颜色不对,需要把rgb值除以255,所以最终转换公式是: cc.c3b(r,g,b) = ...
- ionic3 国际化 转义 html
<div [innerHTML]="assembleHTML(detail)"> import { DomSanitizer } from '@angular/plat ...
- java实现http请求
String apiUrl = "https://api.seniverse.com/v3/weather/now.json?key=" + key + "&lo ...
- 【EasyNetQ】- 发布/订阅模式
EasyNetQ支持的最简单的消息传递模式是发布/ 订阅.这种模式是消除消费者信息提供者的绝佳方式.出版商简单地向全世界说,“这已经发生了”或“我现在有了这些信息”.它不关心是否有人正在倾听,他们可能 ...
- C#学习-接口的成员
在接口中定义方法不能添加任何访问修饰符,因为接口中的方法是默认为public,如果显式地指定了修饰符,则会出现编译时错误. 定义玩接口之后,如果有类想继承该接口,则它必须显示接口中定义的所有方法. 在 ...
- [慢更]Sublime Text 快捷键及使用过的插件
整理自己常用的sublime text命令和插件 1.pretty json Json 快速格式化,免去url访问json站点的烦恼. 摘自:https://segmentfault.com/a/11 ...