Ha, it's English time, let's spend a few minutes to learn a simple machine learning example in a simple passage.

Introduction

  • What is machine learning? you design methods for machine to learn itself and improve itself.
  • By leading into the machine learning methods, this passage introduced three methods to get optimal k and b of linear regression(y = k*x + b).
  • The data used is produced by ourselves.
  1. Self-sufficient data generation
  2. Random Chosen Method
  3. Supervised Direction Method
  4. Gradient Descent Method
  5. Conclusion

Self-sufficientDataGeneration

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import random #produce data
age_with_fares = pd.DataFrame({"Fare":[263.0, 247.5208, 146.5208, 153.4625, 135.6333, 247.5208, 164.8667, 134.5, 135.6333, 153.4625, 134.5, 263.0, 211.5, 263.0, 151.55, 153.4625, 227.525, 211.3375, 211.3375],
"Age":[23.0, 24.0, 58.0, 58.0, 35.0, 50.0, 31.0, 40.0, 36.0, 38.0, 41.0, 24.0, 27.0, 64.0, 25.0, 40.0, 38.0, 29.0, 43.0]})
sub_fare = age_with_fares['Fare']
sub_age = age_with_fares['Age'] #show our data
plt.scatter(sub_age,sub_fare)
plt.show()

def func(age, k, b): return k*age+b
def loss(y,yhat): return np.mean(np.abs(y-yhat))
#here we choose only minus methods as the loss, besides, there are mean-square-error(L2) loss and other loss methods

RandomChosenMethod

min_error_rate = float('inf')

loop_times = 10000
losses = [] def step(): return random.random() * 2 - 1
# random生成 0~1的随机数;(0,1)*2 -> (0,2); 再减1 -> (-1,1), 随机生成+循环:学习动力来源 while loop_times > 0:
k_hat = random.random() * 20 - 10
b_hat = random.random() * 20 - 10
estimated_fares = func(sub_age, k_hat, b_hat)
error_rate = loss(y=sub_fare, yhat=estimated_fares)
if error_rate<min_error_rate:# 自我监督机制体现在此
min_error_rate = error_rate
losses.append(error_rate)
best_k = k_hat
best_b = b_hat loop_times -= 1 plt.scatter(sub_age, sub_fare)
plt.plot(sub_age, func(sub_age, best_k, best_b), c = 'r')
plt.show()

show the loss change

plt.plot(range(len(losses)), losses)
plt.show()

Explain

  • We can see the loss decrease sometimes quickly, sometimes slowly, anyway, it decreases finally.
  • One shortcoming of this method: the Random Chosen methods is not so valid as it runs random function tons of time.
  • Because even when it comes out a better parameter, it may choose a worse one next time.
  • One improved method see next part.

SupervisedDirectionMethod

change_directions = [
(+1, -1),# k increase, b decrease
(+1, +1),
(-1, -1),
(-1, +1)
]
min_error_rate = float('inf') loop_times = 10000
losses = [] best_direction = random.choice(change_directions)
#定义每次变化(步长)的大小
def step(): return random.random()*2-1
#random生成 0~1的随机数;(0,1)*2 -> (0,2); 再减1 -> (-1,1);
#但是change_directions已经有加减1(改变方向)的操作,所以去掉 *2-1
#但保留*2-1 能增加choise k_hat = random.random() * 20 - 10
b_hat = random.random() * 20 - 10
best_k, best_b = k_hat, b_hat
while loop_times > 0:
k_delta_direction, b_delta_direction = best_direction or random.choice(change_directions)
k_delta = k_delta_direction * step()
b_delta = b_delta_direction * step() new_k = best_k + k_delta
new_b = best_b + b_delta estimated_fares = func(sub_age, new_k, new_b)
error_rate = loss(y=sub_fare, yhat=estimated_fares)
#print(error_rate) if error_rate < min_error_rate:#supervisor learning
min_error_rate = error_rate
best_k, best_b = new_k, new_b best_direction = (k_delta_direction, b_delta_direction) #print(min_error_rate)
#print("loop == {}".format(loop_times))
losses.append(min_error_rate)
#print("f(age) = {} * age + {}, with error rate: {}".format(best_k, best_b, error_rate))
else:
best_irection = random.choice(list(set(change_directions)-{(k_delta_direction, b_delta_direction)}))
#新方向不能等于老方向
loop_times -= 1
print("f(age) = {} * age + {}, with error rate: {}".format(best_k, best_b, error_rate))
plt.scatter(sub_age, sub_fare)
plt.plot(sub_age, func(sub_age, best_k, best_b), c = 'r')
plt.show()

show the loss change

plt.plot(range(len(losses)), losses)
plt.show()

Explain

  • The Supervised Direction method(2nd method) is better than Random Chosen method(1st method).
  • The 2nd method introduced supervise mechanism, which is more efficiently in changing parameters k and b.
  • But the 2nd method can't optimize the parameters to smaller magnitude.
  • Besides, the 2nd method can't find the extreme value, thus can't find the optimal parameters effectively.

GradientDescentMethod

min_error_rate = float('inf')
loop_times = 10000
losses = []
learing_rate = 1e-1 change_directions = [
# (k, b)
(+1, -1), # k increase, b decrease
(+1, +1),
(-1, +1),
(-1, -1) # k decrease, b decrease
] k_hat = random.random() * 20 - 10
b_hat = random.random() * 20 - 10 best_direction = None
def step(): return random.random() * 1
direction = random.choice(change_directions) def derivate_k(y, yhat, x):
abs_values = [1 if (y_i - yhat_i) > 0 else -1 for y_i, yhat_i in zip(y, yhat)] return np.mean([a * -x_i for a, x_i in zip(abs_values, x)]) def derivate_b(y, yhat):
abs_values = [1 if (y_i - yhat_i) > 0 else -1 for y_i, yhat_i in zip(y, yhat)]
return np.mean([a * -1 for a in abs_values]) while loop_times > 0: k_delta = -1 * learing_rate * derivate_k(sub_fare, func(sub_age, k_hat, b_hat), sub_age)
b_delta = -1 * learing_rate * derivate_b(sub_fare, func(sub_age, k_hat, b_hat)) k_hat += k_delta
b_hat += b_delta estimated_fares = func(sub_age, k_hat, b_hat)
error_rate = loss(y=sub_fare, yhat=estimated_fares) #print('loop == {}'.format(loop_times))
#print('f(age) = {} * age {}, with error rate: {}'.format(k_hat, b_hat, error_rate))
losses.append(error_rate) loop_times -= 1 print('f(age) = {} * age {}, with error rate: {}'.format(k_hat, b_hat, error_rate))
plt.scatter(sub_age, sub_fare)
plt.plot(sub_age, func(sub_age, k_hat, b_hat), c = 'r')
plt.show()

show the loss change

plt.plot(range(len(losses)), losses)
plt.show()

Explain

  • To fit the objective function given discrete data, we use the loss function to determine how good the fit is.
  • In order to get the minimum loss, it becomes a problem of finding the extremum without constraints.
  • Therefore, the method of gradient reduction of the objective function is conceived.
  • The gradient is the maximum value in the directional derivative.
  • When the gradient approaches 0, we fit the better objective function.

Conclusion

  • Machine learning is a process to make the machine learning and improving by methods designed by us.
  • Random function usually not so efficient, but when we add supervise mechanism, it becomes efficient.
  • Gradient Descent is efficiently to find extreme value and optimal.

Serious question for this article:

Why do you use machine learning methods instead of creating a y = k*x + b formula?

  • In some senarios, complicated formula can't meet the reality needs, like irrational elements in economics models.
  • When we have enough valid data, we can run regression or classification model by machine learning methods
  • We can also evaluate our machine learning model by test data which contributes to the application of the model in our real life
  • This is just an example, Okay.

Reference for this article: Jupyter Notebook

Linear Regression with machine learning methods的更多相关文章

  1. Machine Learning Methods: Decision trees and forests

    Machine Learning Methods: Decision trees and forests This post contains our crib notes on the basics ...

  2. How to use data analysis for machine learning (example, part 1)

    In my last article, I stated that for practitioners (as opposed to theorists), the real prerequisite ...

  3. 机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)

    ##机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)---#####注:机器学习资料[篇目一](https://github.co ...

  4. How do I learn machine learning?

    https://www.quora.com/How-do-I-learn-machine-learning-1?redirected_qid=6578644   How Can I Learn X? ...

  5. booklist for machine learning

    Recommended Books Here is a list of books which I have read and feel it is worth recommending to fri ...

  6. Machine Learning and Data Mining(机器学习与数据挖掘)

    Problems[show] Classification Clustering Regression Anomaly detection Association rules Reinforcemen ...

  7. Why The Golden Age Of Machine Learning is Just Beginning

    Why The Golden Age Of Machine Learning is Just Beginning Even though the buzz around neural networks ...

  8. Introduction to Machine Learning

    Chapter 1 Introduction 1.1 What Is Machine Learning? To solve a problem on a computer, we need an al ...

  9. Machine learning | 机器学习中的范数正则化

    目录 1. \(l_0\)范数和\(l_1\)范数 2. \(l_2\)范数 3. 核范数(nuclear norm) 参考文献 使用正则化有两大目标: 抑制过拟合: 将先验知识融入学习过程,比如稀疏 ...

随机推荐

  1. Oracle安装和配置Oracle数据库快速指南

    Oracle安装12C要求参考文档 汇总 中文版:在 Unix AIX,HP-UX,Linux,Solaris 和 MS Windows 操作系统上安装和配置 Oracle 数据库(RDBMS)的要求 ...

  2. Adobe XD 介绍

    Adobe XD 关于XD这个软件我也是经过别人介绍才知道的,刚出来每两年,之前是没有中文版的,最近才更新了中文版,使用起来更加方便了. 这就是主界面,界面十分简洁但又一目了然,同时主界面还会有链接, ...

  3. Failed to set MokListRT: Invalid Parameter Something as gone seriously wrong: import_mok_state() failed: Invalid Parameter

    今天yum update升级centos7,重启后发现开不了机,报错如下: Failed to set MokListRT: Invalid ParameterSomething as gone se ...

  4. JavaScript 当前URL取参返回字典

    getParam : function(){ return (key, strURL = window.location.search) => new RegExp("(^|\\?|& ...

  5. React组件绑定this的三种方法

    我们在使用React组件时,调用方法常常用到this和event对象,默认情况是不会绑定到组件上的,需要特殊处理. 节点上使用bind绑定 特点:该方法会在每次渲染组件时都会重新绑定一次,消耗一定的性 ...

  6. zabbix监控实战<3> 之自定义监控实例

    第一章    自定义监控tcp状态 命令可以选择ss 或者 netstat    ss打印基于socket的统计信息,实际运行下来,ss的速度要比netstat要快得多 1.1  tcp的十一种状态 ...

  7. window安装pycharm Django

    pycharm 安装Pycharm  直接在官网下载就可以,这里说一下如何破解注册码的问题: 修改电脑中hosts文件(地址: C:\Windows\System32\drivers\etc ),改变 ...

  8. day12 python作业:员工信息表

    作业要求: 周末大作业:实现员工信息表文件存储格式如下:id,name,age,phone,job1,Alex,22,13651054608,IT2,Egon,23,13304320533,Tearc ...

  9. 比NGINX更快:nginx-1.15.5 vs mongols-1.2.3

    nginx是多进程web服务器的优秀代表. 本文要用mongols-1.2.3实现一个比nginx更快的多进程的web服务器. mongols是C++ 服务器基础设施库, 它的主要特性如下: tcp ...

  10. SpringBoot 注解

    @RestController和@RequestMapping注解 我们的Example类上使用的第一个注解是 @RestController .这被称为一个构造型(stereotype)注解.它为阅 ...