题意

有一个长度为 \(n\) 的序列 \(A\) 和常数 \(L, P\) ,你需要将它分成若干段,每 \(P\) 一段的代价为 \(| \sum ( A_i ) − L|^P\) ,求最小代价的划分方案。

\(n \le 10^5 , 1 \le P \le 10\)

题解

考虑暴力 \(O(n^2)\) dp。

\[dp_i = \min_{j = 0} ^ {i - 1} |sum_j - sum_i - L|^P + dp_j
\]

这个方程是具有决策单调性的。

决策单调性是指,对于任意 \(u < v < i < j\) ,若在 \(i\) 处决策 \(v\) 优于决策 \(u\) ,则在 \(j\) 处必有决策 \(v\) 优于决策 \(u\) 。

至于证明,你考虑那是个二次函数,一阶导数单增等性质就可以了。

然后考虑用一个栈来维护每个决策会更新的区间就行了,新加入一个决策时要二分得到它的区间。

令 \(f(i, j)\) 为从 \(i\) 转移到 \(j\) 得到的 \(dp_j\) 。

具体二分的时候就找到 \(f(i, mid) - f(stk[top], mid)\) 的零点就行了,之后的点肯定 \(i\) 更优。

然后每次转移的话就二分找到当前这个点属于的决策区间,注意边界问题,然后每次要把栈顶所有当前不优于它的状态都要弹掉。

所以最后复杂度就是 \(O(n \log n)\) 的。

总结

决策单调性优化都可以用栈维护转移区间,然后每次二分找转移点,以及求区间就行了。

代码

#include <bits/stdc++.h>

#define For(i, l, r) for(register int i = (l), i##end = (int)(r); i <= i##end; ++i)
#define Fordown(i, r, l) for(register int i = (r), i##end = (int)(l); i >= i##end; --i)
#define Set(a, v) memset(a, v, sizeof(a))
#define Cpy(a, b) memcpy(a, b, sizeof(a))
#define debug(x) cout << #x << ": " << (x) << endl
#define DEBUG(...) fprintf(stderr, __VA_ARGS__) using namespace std; typedef long double ld;
typedef long long ll; template<typename T> inline bool chkmin(T &a, T b) {return b < a ? a = b, 1 : 0;}
template<typename T> inline bool chkmax(T &a, T b) {return b > a ? a = b, 1 : 0;} inline int read() {
int x(0), sgn(1); char ch(getchar());
for (; !isdigit(ch); ch = getchar()) if (ch == '-') sgn = -1;
for (; isdigit(ch); ch = getchar()) x = (x * 10) + (ch ^ 48);
return x * sgn;
} void File() {
#ifdef zjp_shadow
freopen ("P1912.in", "r", stdin);
freopen ("P1912.out", "w", stdout);
#endif
} const int N = 1e5 + 1e3; int n, Pow, L; int sum[N], pre[N], stk[N], seg[N]; int ans[N]; char str[N][50]; ld dp[N]; ld fpm(ld x, int power) {
ld res = 1;
for (; power; power >>= 1, x *= x)
if (power & 1) res *= x;
return res;
} ld Calc(int S, int T) {
return S >= T ? 1e18 + 1 : dp[S] + fpm(abs(sum[T] - sum[S] - L), Pow);
} int main () { File(); int cases = read();
while (cases --) {
n = read(); L = read(); Pow = read();
For (i, 1, n) {
scanf ("%s", str[i]);
sum[i] = sum[i - 1] + strlen(str[i]) + 1;
}
++ L;
int top = 1; stk[1] = seg[1] = dp[0] = 0; For (i, 1, n) {
int pos = upper_bound(seg + 1, seg + top + 1, i) - seg - 1;
dp[i] = Calc(pre[i] = stk[pos], i);
for (; top && Calc(stk[top], seg[top]) > Calc(i, seg[top]); -- top); int l = seg[top], r = n, res = 0;
while (l <= r) {
int mid = (l + r) >> 1;
if (Calc(stk[top], mid) <= Calc(i, mid))
res = mid, l = mid + 1;
else
r = mid - 1;
}
if (res < n)
seg[++ top] = res + 1, stk[top] = i;
} if (dp[n] > 1e18) puts("Too hard to arrange");
else {
printf ("%lld\n", (ll) dp[n]);
top = 0;
for (int u = n; u; u = pre[u])
ans[++ top] = u;
ans[top + 1] = 0;
Fordown (i, top, 1) For(j, ans[i + 1] + 1, ans[i])
printf ("%s%c", str[j], j == jend ? '\n' : ' ');
}
puts("--------------------");
} return 0; }

[NOI2009]诗人小G(dp + 决策单调性优化)的更多相关文章

  1. [NOI2009]诗人小G --- DP + 决策单调性

    [NOI2009]诗人小G 题目描述: 小G是一个出色的诗人,经常作诗自娱自乐. 但是,他一直被一件事情所困扰,那就是诗的排版问题. 一首诗包含了若干个句子,对于一些连续的短句,可以将它们用空格隔开并 ...

  2. 2018.09.28 bzoj1563: [NOI2009]诗人小G(决策单调性优化dp)

    传送门 决策单调性优化dp板子题. 感觉队列的写法比栈好写. 所谓决策单调性优化就是每次状态转移的决策都是在向前单调递增的. 所以我们用一个记录三元组(l,r,id)(l,r,id)(l,r,id)的 ...

  3. [bzoj1563][NOI2009]诗人小G(决策单调性优化)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1563 分析: 首先可得朴素的方程:f[i]=min{f[j]+|s[j]-j-s[i] ...

  4. BZOJ1563 NOI2009 诗人小G【决策单调性优化DP】

    LINK 因为是图片题就懒得挂了 简要题意:有n个串,拼接两个串需要加一个空格,给你l和p,问你拼接后每个串的总长减l的绝对值的p次方的最小值 首先打表发现一下这题是决策单调的对于所有数据都成立就当他 ...

  5. 洛谷P1912 [NOI2009]诗人小G(决策单调性)

    传送门 题解 决策单调性是个啥……导函数是个啥……这题解讲的是啥……我是个啥…… //minamoto #include<iostream> #include<cstdio> ...

  6. 【BZOJ1563】诗人小G(决策单调性DP)

    题意:给定N,L,P,求f[N] sum[i]递增,L<=3e6,P<=10 思路:四边形不等式的证明见https://www.byvoid.com/zhs/blog/noi-2009-p ...

  7. P1912 [NOI2009]诗人小G[决策单调性优化]

    地址 n个数划分若干段,给定$L$,$p$,每段代价为$|sum_i-sum_j-1-L|^p$,求总代价最小. 正常的dp决策单调性优化题目.不知道为什么luogu给了个黑题难度.$f[i]$表示最 ...

  8. bzoj1563: [NOI2009]诗人小G 决策单调性(1D1D)

    目录 题目链接 题解 代码 题目链接 bzoj1563: [NOI2009]诗人小G 题解 \(n^2\) 的dp长这样 \(f_i = min(f_j + (sum_i - sum_j - 1 - ...

  9. P1912 [NOI2009]诗人小G

    P1912 [NOI2009]诗人小G 思路: 平行四边形不等式优化dp 因为f(j, i) = abs(sum[i]-sum[j]+i-j-1-l)^p 满足平行四边形不等式 j < i f( ...

  10. 1563: [NOI2009]诗人小G

    1563: [NOI2009]诗人小G https://lydsy.com/JudgeOnline/problem.php?id=1563 分析: 直接转移f[i]=f[j]+cost(i,j),co ...

随机推荐

  1. ABP大型项目实战(1) - 目录

    前面我写了<如何用ABP框架快速完成项目>系列文章,讲述了如何用ABP快速完成项目.   然后我收到很多反馈,其中一个被经常问到的问题就是,“看了你的课程,发现ABP的优势是快速开发,那么 ...

  2. TextView走马灯

    设置textView走马灯形式显示: android:marqueeRepeatLimit="marquee_forever" android:scrollHorizontally ...

  3. 测者的测试技术手册:自动的自动化框架EvoSuite集成Cobertura得到可视化的代码覆盖报告

    EvoSuite是由Sheffield等大学联合开发的一种开源工具,用于自动生成测试用例集,生成的测试用例均符合Junit的标准,可直接在Junit中运行.得到了Google和Yourkit的支持. ...

  4. JavaCC的TokenManager和Parser

    TokenManager不会感知Parser的存在,这意味着TokenManager会尽量匹配足够长的终结符,而不是依据Parser的语法规则. 当被解析的文本为" @@ "时,T ...

  5. 目录命令(dir)

    DIR 命令: // 描述: (Directory) 显示目录的文件和子目录的列表. // 语法: dir [<Drive>:][<Path>][<FileName> ...

  6. Ubuntu 16.04 使用校园网客户端上网

    对于使用校园网的学生来说,安装好Ubuntu之后,很多人需要用 DrClient 客户端来上网,那么怎么操作呢, 这里介绍 DrClient 客户端在Ubuntu上的使用方法, 首先下载 对应版本的软 ...

  7. 英语口语练习系列-C09-常用动词

    <先秦 · 关雎> 关关雎鸠,在河之洲.窈窕淑女,君子好逑. 参差荇菜,左右流之.窈窕淑女,寤寐求之. 求之不得,寤寐思服.悠哉悠哉,辗转反侧. 参差荇菜,左右采之.窈窕淑女,琴瑟友之. ...

  8. hashlib模块

    老师博客:http://www.cnblogs.com/Eva-J/articles/7228075.html#_label12 摘要算法 什么是摘要算法呢?摘要算法又称哈希算法.散列算法.它通过一个 ...

  9. 通过ip查询自己电脑的共享文件夹

    查看电脑所有的共享文件或文件夹的三种方法如下: 方法一. 右键点击网上邻居,点击属性进入网上邻居属性页面. 选中本地连接,在窗口的左下方有详细信息,可以看到内网IP,记住IP地址. 直接在地址栏输入记 ...

  10. redis常用命令大全

    1.基于内存的key-value数据库 2.基于c语言编写的,可以支持多种语言的api //set每秒11万次,取get 81000次 3.支持数据持久化 4.value可以是string,hash, ...