题目大意

给一张二分图,有左部点和右部点。

有三种边,第一种是直接从左部点连向右部点,出现概率为50%。

第二种边一组里有两条边,这两条边同时出现或者不出现,概率都是50%。

第三种边一组里有两条边,这两条边只能出现一条,概率都是50%。

求这张图完美匹配数的期望

题解

一条边能够带来贡献的条件不是它出现了,而是它出现在了匹配中。所以我们应当直接计算每条边出现在最大匹配中的概率。

第一种边不用研究。

第二种边每一条条边出现在最大匹配中的概率都是50%。

两条边出现在最大匹配中的概率也是50%。

如果我们直接连两条50%的边的话,两条边同时出现的概率就是25%。

所以我们补一条两组的边,概率为25%。

第三种边同理,两条边出现在最大匹配中的概率是0%。

所以我们补一组-25%的边就好了。

dp的话,拿map记搜一下就好了。

代码

#include<iostream>
#include<cstdio>
#include<map>
#define N 16
using namespace std;
typedef long long ll;
const int mod=1e9+;
map<int,int>mp;
map<int,int>::iterator it;
int lo[<<N],tot,head[N],n,m;
inline int rd(){
int x=;char c=getchar();bool f=;
while(!isdigit(c)){if(c=='-')f=;c=getchar();}
while(isdigit(c)){x=(x<<)+(x<<)+(c^);c=getchar();}
return f?-x:x;
}
inline ll power(ll x,ll y){
ll ans=;
while(y){
if(y&)ans=ans*x%mod;x=x*x%mod;y>>=;
}
return ans;
}
inline void MOD(ll &x){while(x>=mod)x-=mod;}
struct edge{int n,to,l;}e[N*N*];
inline void add(int u,int v){
int loo=lo[u&(-u)];
e[++tot].n=head[loo];e[tot].to=u;head[loo]=tot;e[tot].l=v;
}
int DP(int s){
if(!s)return ;
it=mp.find(s);
if(it!=mp.end())return it->second;
int loo=lo[s&(-s)];ll ans=;
for(int i=head[loo];i;i=e[i].n){
int v=e[i].to;if((v&s)!=v)continue;
ans+=1ll*DP(s^v)*e[i].l%mod;MOD(ans);
}
return mp[s]=ans;
}
int main(){
n=rd();m=rd();int u1,v1,u2,v2,ma=(<<n)-,opt;
ll n2=power(,mod-),n4=power(,mod-);
lo[]=;int cc=;
for(int i=;i<=n;++i)cc<<=,lo[cc]=i;
for(int i=;i<=m;++i){
opt=rd();
if(opt==){
u1=rd();v1=rd();u1--;v1--;
int s1=(<<u1)|(<<v1+n);
add(s1,n2);
}
else if(opt==){
u1=rd()-;v1=rd()-;u2=rd()-;v2=rd()-;
int s1=(<<u1)|(<<v1+n),s2=(<<u2)|(<<v2+n);
add(s1,n2);add(s2,n2);
if(!(s1&s2)){
add(s1|s2,n4);
}
}
else{
u1=rd()-;v1=rd()-;u2=rd()-;v2=rd()-;
int s1=(<<u1)|(<<v1+n),s2=(<<u2)|(<<v2+n);
add(s1,n2);add(s2,n2);
if(!(s1&s2)){
add(s1|s2,mod-n4);
}
}
}
cout<<1ll*DP(ma|(ma<<n))*power(,n)%mod;
return ;
}

[THUWC2017]随机二分图的更多相关文章

  1. Luogu4547 THUWC2017 随机二分图 概率、状压DP

    传送门 考虑如果只有$0$组边要怎么做.因为$N \leq 15$,考虑状压$DP$.设$f_i$表示当前的匹配情况为$i$时的概率($i$中$2^0$到$2^{N-1}$表示左半边的匹配情况,$2^ ...

  2. BZOJ5006 THUWC2017随机二分图(概率期望+状压dp)

    下称0类为单边,1类为互生边,2类为互斥边.对于一种匹配方案,考虑其出现的概率*2n后对答案的贡献,初始为1,如果有互斥边显然变为0,否则每有一对互生边其贡献*2.于是有一个显然的dp,即设f[S1] ...

  3. THUWC2017随机二分图

    题面链接 洛谷 sol 唯一的重点是拆边... 0的不管,只看1.2. 先无论如何把两条边的边权赋为\(0.5\)然后我们发现如果两个都选了. 对于第一种边,我们发现如果\(\frac{1}{2} * ...

  4. [BZOJ5006][LOJ#2290][THUWC2017]随机二分图(概率+状压DP)

    https://loj.ac/problem/2290 题解:https://blog.csdn.net/Vectorxj/article/details/78905660 不是很好理解,对于边(x1 ...

  5. [LOJ2290] [THUWC2017] 随机二分图

    题目链接 LOJ:https://loj.ac/problem/2290 洛谷:https://www.luogu.org/problemnew/show/P4547 Solution 首先考虑只有第 ...

  6. [思路题][LOJ2290][THUWC2017]随机二分图:状压DP+期望DP

    分析 考虑状压DP,令\(f[sta]\)表示已匹配状态是\(sta\)(\(0\)代表已匹配)时完美匹配的期望数量,显然\(f[0]=1\). 一条边出现了不代表它一定在完美匹配内,这也导致很难去直 ...

  7. P4547 [THUWC2017]随机二分图(状压,期望DP)

    期望好题. 发现 \(n\) 非常小,应该要想到状压的. 我们可以先只考虑 0 操作. 最难的还是状态: 我们用 \(S\) 表示左部点有哪些点已经有对应点, \(T\) 表示右部点有哪些点已经有对应 ...

  8. 题解 洛谷 P4547 【[THUWC2017]随机二分图】

    根据题意,题目中所求的即为所有\(n!\)种完美匹配的各自的出现概率之和再乘上\(2^n\)的值. 发现\(n\)很小,考虑状压\(DP\).设\(f_{S,T}\)为左部图匹配情况为\(S\),右部 ...

  9. 【THUWC2017】随机二分图(动态规划)

    [THUWC2017]随机二分图(动态规划) 题面 BZOJ 洛谷 题解 如果每天边的限制都是\(0.5\)的概率出现或者不出现的话,可以把边按照二分图左侧的点的编号排序,然后设\(f[i][S]\) ...

随机推荐

  1. PM过程能力成熟度2级

    当PM意识到自己不再是程序员后,就会在项目管理方面,逐渐达到过程能力成熟度1级.尽管这种亲身经历会带给PM管理的信心,但从项目的层面来说,整体还是混沌的,PM在经历过1级的阶段性胜利后,将面临更多的问 ...

  2. input file实现多选和限制文件上传类型

    <!-- input file  accept 属性设置可上传文件的类型  multiple属性设置可多文件上传--> <!-- accept 并未真正的实现限制上传文件类型,只是在 ...

  3. 【公众号系列】SAP将裁员4400人,颤抖吧!

    公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[公众号系列]SAP将裁员4400人,颤抖吧! ...

  4. 20180831-Linux环境下Python 3.6.6 的安装说明

    20180831-Linux环境下Python 3.6.6 的安装说明 摘要:Python3 安装部署,普通用户,编译安装 Author: andy_yhm@yeah.net Date: 201808 ...

  5. AjaxPro2完整入门教程

    一.目录 简单类型数据传送(介绍缓存,访问Session等) 表类型数据传送 数组类型数据传送(包含自定义类型数据) 二.环境搭建 1.这里本人用的是VS2012. 2.新建一个空的Web项目(.NE ...

  6. 【导航】Python相关

    [博客导航] Python相关导航 [索引]Python常用资源(从新手到大牛) [任务]Python语言程序设计.MOOC学习 [笔记]Python集成开发环境——PyCharm 2018.3下载. ...

  7. Jetson TX2(2)ubutu1604--安装opencv3.4.0

    1安装OpenCV3.4.0+contrib 1 在终端中敲入以下两句sudo rm /var/cache/apt/archives/locksudo rm /var/lib/dpkg/lock su ...

  8. python小白——进阶之路——day2天-———变量的缓存机制+自动类型转换

    # ###同一文件,变量的缓存机制 ''' -->Number 部分 1.对于整型而言,-5~正无穷范围内的相同值 id一致 2.对于浮点数而言,非负数范围内的相同值 id一致 3.布尔值而言, ...

  9. 基于密度峰值的聚类(DPCA)

    1.背景介绍 密度峰值算法(Clustering by fast search and find of density peaks)由Alex Rodriguez和Alessandro Laio于20 ...

  10. C#中字节数组(byte[])和字符串相互转换

    转换过程主要使用到System.Text.Encoding命名空间下的类 1. 字符串转换成字节数组byte[]: string str = "This is test string&quo ...