HDU 1848 Fibonacci again and again(SG函数入门)题解
思路:SG打表
代码:
#include<queue>
#include<cstring>
#include<set>
#include<map>
#include<stack>
#include<cmath>
#include<vector>
#include<cstdio>
#include<iostream>
#include<algorithm>
#define eps 1e-9
typedef long long ll;
const int maxn = 1e3 + ;
const int seed = ;
const ll MOD = 1e9 + ;
const int INF = 0x3f3f3f3f;
using namespace std;
int fib[];
int s[maxn], sg[maxn];
void getSG(){
sg[] = ;
for(int i = ; i <= ; i++){
memset(s, , sizeof(s));
for(int j = ; fib[j] <= i; j++){
s[sg[i - fib[j]]] = ;
}
for(int j = ; j <= i; j++){
if(!s[j]){
sg[i] = j;
break;
}
}
}
}
void FIB(){
fib[] = , fib[] = ;
for(int i = ; i <= ; i++)
fib[i] = fib[i - ] + fib[i - ];
}
int main(){
int n, m, p;
FIB();
getSG();
while(scanf("%d%d%d", &n, &m ,&p) && n + m + p){
if(sg[n] ^ sg[m] ^ sg[p]) printf("Fibo\n");
else printf("Nacci\n");
}
return ;
}
HDU 1848 Fibonacci again and again(SG函数入门)题解的更多相关文章
- HDU 1848 Fibonacci again and again(SG函数)
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission( ...
- HDU 1848 Fibonacci again and again SG函数做博弈
传送门 题意: 有三堆石子,双方轮流从某堆石子中去f个石子,直到不能取,问先手是否必胜,其中f为斐波那契数. 思路: 利用SG函数求解即可. /* * @Author: chenkexing * @D ...
- hdu 1848 Fibonacci again and again(SG函数)
Fibonacci again and again HDU - 1848 任何一个大学生对菲波那契数列(Fibonacci numbers)应该都不会陌生,它是这样定义的: F(1)=1; F(2)= ...
- HDU 1848 Fibonacci again and again (斐波那契博弈SG函数)
Fibonacci again and again Time Limit: 1000MS Memory Limit: 32768KB 64bit IO Format: %I64d & ...
- HDU 1848 Fibonacci again and again【SG函数】
对于Nim博弈,任何奇异局势(a,b,c)都有a^b^c=0. 延伸: 任何奇异局势(a1, a2,… an)都满足 a1^a2^…^an=0 首先定义mex(minimal excludant)运算 ...
- hdu 1848 Fibonacci again and again (初写SG函数,详解)
思路: SG函数的应用,可取的值为不连续的固定值,可用GetSG求出SG,然后三堆数异或. SG函数相关注释见代码: 相关详细说明请结合前一篇博客: #include<stdio.h> # ...
- hdu 1848 Fibonacci again and again 组合游戏 SG函数
题目链接 题意 三堆石子,分别为\(m,n,p\)个,两人依次取石子,每次只能在一堆当中取,并且取的个数只能是斐波那契数.最后没石子可取的人为负.问先手会赢还是会输? 思路 直接按定义计算\(SG\) ...
- SG函数入门&&HDU 1848
SG函数 sg[i]为0表示i节点先手必败. 首先定义mex(minimal excludant)运算,这是施加于一个集合的运算,表示最小的不属于这个集合的非负整数.例如mex{0,1,2,4}=3. ...
- HDU 1848 Fibonacci again and again【博弈SG】
Problem Description 任何一个大学生对菲波那契数列(Fibonacci numbers)应该都不会陌生,它是这样定义的: F(1)=1; F(2)=2; F(n)=F(n-1)+F( ...
随机推荐
- 2018/03/11 每日一个Linux命令 之 top
每日一个Linux命令 之 top 今天在公司测试服务器上跑了一个我写的功能[本地测试过的],但是不知道怎么跑了个无限死循环出来,一个文件的体积在不停的变大,如果不管的话这能行? 上去一看,PHP ...
- mybatis联接查询例子
where判断如果放在最外层就是对连接查询后的结果经行筛选. SELECT * from ( and lw_area.area_id like '35%' ) la LEFT JOIN ( selec ...
- 分布式网格缓存Coherence简介
Coherence企业级缓存(一) 特点 摘要:Oracle Coherence是一个企业级的分布式集群缓存框架.具有自管理,自恢复,高可用性,高扩展性等优良特点,在电信BOSS等项目中有很大的应用价 ...
- 2017php经典面试题
1.PHP语言的一大优势是跨平台,什么是跨平台?一.PHP基础: PHP的运行环境最优搭配为Apache+MySQL+PHP,此运行环境可以在不同操作系统(例如windows.Linux等)上配置,不 ...
- Spark2.x学习笔记:Spark SQL快速入门
Spark SQL快速入门 本地表 (1)准备数据 [root@node1 ~]# mkdir /tmp/data [root@node1 ~]# cat data/ml-1m/users.dat | ...
- [LeetCode] 127. Word Ladder _Medium tag: BFS
Given two words (beginWord and endWord), and a dictionary's word list, find the length of shortest t ...
- scipy模块
- Amaze UI JS 气泡弹出
http://amazeui.org/javascript/popover?_ver=2.x
- VS相关设置
1.显示行号 工具-〉选项-〉文本编辑器-〉语言(比如C#)-〉显示-〉行号 2.“解决方案资源管理器”被拖出来了,无法还原 两种方法:1.窗口-->重置窗口布局2.工具-->导入和导出设 ...
- iOS 绘图 (UIImage的一些操作)
UIGraphicsBeginImageContextWithOptions,本文主要在图片类型上下文中对图片进行操作,具体实现的功能: - 1.生成图片 - 2.绘制图片到视图 - 3.添加水印 ...