Parsing Natural Scenes and Natural Language with Recursive Neural Networks-paper
Parsing Natural Scenes and Natural Language with Recursive Neural Networks
作者信息:
Richard Socher richard@socher.org
Cliff Chiung-Yu Lin chiungyu@stanford.edu
Andrew Y. Ng ang@cs.stanford.edu
Christopher D. Manning manning@stanford.edu
Computer Science Department, Stanford University, Stanford, CA 94305, USA
年份:2011
代码和数据公开:
https://www.socher.org/index.php/Main/ParsingNaturalScenesAndNaturalLanguageWithRecursiveNeuralNetworks
理解什么是semantic representation(word index向量-》~,图片的segment-》~)
Syntactic parsing of natural language sentences:
its importance in mediating between linguistic expression and meaning.
Our RNN architecture jointly learns how to parse and how to represent phrases in a continuous vector space of features.
优点: This allows us to embed both single lexical units and unseen, variable-sized phrases in a syntactically coherent order. The learned feature representations capture syntactic and compositional-semantic information. We show that they can help inform accurate parsing decisions and capture interesting similarities between phrases and sentences.
4 recursive neural networks for structure predication
我们的discriminative parsing architecture的目标就是要学到一个函数f:X->Y,Y是所有可能的binary parse trees,输入X包含两部分1)activation vectors的集合,代表图片块或者句子的单词,2)对称矩阵A,当segmentI和segmentJ相邻时A(i,j)=1,所以主对角线上下的两个对角线diagonal的值一定为1
句子的ground truth tree只有一个,但图片的ground可能有多个
所有可能的parser tree中,只有当在和不同类merge之前所有属于同一类的相邻的部分都merge到一起时,才算正确
4.1 max-margin estimation
▲:合并错了就给惩罚
f:只有当算法认为tree y正确时才得分高 = 最大化s,s即得分,下面会详细
根据2007年的max-margin estimation framework,确保正确的树才是得分最高的树,我们设置正确的树的得分至少比错误的树大
Parsing Natural Scenes and Natural Language with Recursive Neural Networks-paper的更多相关文章
- 论文解读(RvNN)《Rumor Detection on Twitter with Tree-structured Recursive Neural Networks》
论文信息 论文标题:Rumor Detection on Twitter with Tree-structured Recursive Neural Networks论文作者:Jing Ma, Wei ...
- 论文阅读(Xiang Bai——【CVPR2015】Symmetry-Based Text Line Detection in Natural Scenes)
Xiang Bai--[CVPR2015]Symmetry-Based Text Line Detection in Natural Scenes 目录 作者和相关链接 方法概括 创新点和贡献 方法细 ...
- Augmented reality in natural scenes
Augmented reality in natural scenes (Iryna Gordon and David Lowe)2006年关于AR的研究成果 项目主页 http://www.cs.u ...
- “,”、“natural join”、“natural left outer join”、“natural right outer join”的用法总结
“,”:代表笛卡尔积: “natural join”:代表自然连接,即同名列等值连接: “natural left outer join”:表示左外连接: “natural right outer j ...
- 深度学习课程笔记(十六)Recursive Neural Network
深度学习课程笔记(十六)Recursive Neural Network 2018-08-07 22:47:14 This video tutorial is adopted from: Youtu ...
- 递归神经网络(Recursive Neural Network, RNN)
信息往往还存在着诸如树结构.图结构等更复杂的结构.这就需要用到递归神经网络 (Recursive Neural Network, RNN),巧合的是递归神经网络的缩写和循环神经网络一样,也是RNN,递 ...
- 课程五(Sequence Models),第一 周(Recurrent Neural Networks) —— 2.Programming assignments:Dinosaur Island - Character-Level Language Modeling
Character level language model - Dinosaurus land Welcome to Dinosaurus Island! 65 million years ago, ...
- 论文翻译——Dynamic Pooling and Unfolding Recursive Autoencoders for Paraphrase Detection
Dynamic Pooling and Unfolding Recursive Autoencoders for Paraphrase Detection 动态池和展开递归自动编码器的意译检测 论文地 ...
- (转) Deep Learning Resources
转自:http://www.jeremydjacksonphd.com/category/deep-learning/ Deep Learning Resources Posted on May 13 ...
随机推荐
- Spring错误——Spring xml注释——org.xml.sax.SAXParseException; lineNumber: 24; columnNumber: 10; cvc-complex-type.2.3: 元素 'beans' 必须不含字符 [子级], 因为该类型的内容类型为“仅元素”。
背景:配置spring xml,注释xml中文件元素 错误: Caused by: org.xml.sax.SAXParseException; lineNumber: 24; columnNumbe ...
- UVA11995 I Can Guess the Data Structure!
思路 简单题,用栈,队列,优先队列直接模拟即可 代码 #include <cstdio> #include <algorithm> #include <cstring&g ...
- 【C++】回看面向对象与C++
本文将记录在C++与面向对象的重新学习过程中的要点: 未定义行为
- _quest_mod
该功能实现对任务的优化,设定接受任务的条件,比如VIP等级几或者军衔多少持有何种物品才可以接受任务,同时可以配置任务的随机奖励及几率,以上修改都会在任务文本中体现.还支持任务传送功能,接完任务后,可和 ...
- Systemd程序及相关命令
Systemd程序及相关命令 Systemd是一款用于Linux操作系统系统管理和服务管理的工具.它向后兼容SysV init脚本,并且支持许多类似于startup系统服务的功能,比如系统快照(sna ...
- 『Python CoolBook』C扩展库_其一_用法讲解
不依靠其他工具,直接使用Python的扩展API来编写一些简单的C扩展模块. 本篇参考PythonCookbook第15节和Python核心编程完成,值得注意的是,Python2.X和Python3. ...
- linux中pam模块
https://www.cnblogs.com/ilinuxer/p/5087447.html linux中pam模块 一.pam简介 Linux-PAM(linux可插入认证模块)是一套共享库,使本 ...
- SpringMVC+Shiro整合配置文件详解
http://blog.csdn.net/dawangxiong123/article/details/53020424
- K-临近算法(KNN)
K-临近算法(KNN) K nearest neighbour 1.k-近邻算法原理 简单地说,K-近邻算法采用测量不同特征值之间的距离方法进行分类. 优点:精度高.对异常值不敏感.无数据输入假定. ...
- JAVA的原子性和可见性,线程同步的理解
1.原子性 (1)原子是构成物质的基本单位(当然电子等暂且不论),所以原子的意思代表着——“不可分”: (2)原子性是拒绝多线程操作的,不论是多核还是单核,具有原子性的量,同一时刻只能有一个线程来对它 ...