【洛谷5月月赛】玩游戏(NTT,生成函数)
【洛谷5月月赛】玩游戏(NTT,生成函数)
题面
题解
看一下要求的是什么东西
\((a_x+b_y)^i\)的期望。期望显然是所有答案和的平均数。
所以求出所有的答案就在乘一个逆元就好了。
现在考虑怎么算上面那个东西。
对于单个的计算,我们可以用二项式定理直接展开
得到
\]
这样就是很明显的卷积的形式了。
现在考虑怎么计算\(\sum a^i\),
构造\(G(x)=\prod_{i=1}^n(1+a_ix)\)
然后对于\(G(x)\)求\(ln\),再给第\(i\)项乘上\(i\)就好了。
为什么?
因为是乘积的形式,所以\(ln\)之后等价于对于所有东西都先\(ln\)在求和
所以考虑一下单个的\(ln\)值是什么,然后有\(ln'(A(x))=\frac{A'(x)}{A(x)}\)
这个手动用生成函数玩一下就知道了为啥了。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MOD 998244353
#define MAX 888888
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int fpow(int a,int b)
{
int s=1;
while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}
return s;
}
int r[MAX],W[MAX];
void NTT(int *P,int len,int opt)
{
int N,l=0;
for(N=1;N<len;N<<=1)++l;
for(int i=0;i<N;++i)r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
for(int i=0;i<N;++i)if(i<r[i])swap(P[i],P[r[i]]);
for(int i=1;i<N;i<<=1)
{
int w=fpow(3,(MOD-1)/(i<<1));W[0]=1;
for(int k=1;k<i;++k)W[k]=1ll*W[k-1]*w%MOD;
for(int p=i<<1,j=0;j<N;j+=p)
for(int k=0;k<i;++k)
{
int X=P[j+k],Y=1ll*P[i+j+k]*W[k]%MOD;
P[j+k]=(X+Y)%MOD;P[i+j+k]=(X+MOD-Y)%MOD;
}
}
if(opt==-1)
{
reverse(&P[1],&P[N]);
for(int i=0,inv=fpow(N,MOD-2);i<N;++i)P[i]=1ll*P[i]*inv%MOD;
}
}
int n,m,t[MAX];
int S1[MAX],S2[MAX];
int inv[MAX];
int F[MAX],P[MAX];
int jc[MAX],jcinv[MAX];
int tmp[50][MAX],St[50],top;
void Solve(int l,int r,int *P,int *t)
{
if(l==r){P[1]=t[l];P[0]=1;return;}
int mid=(l+r)>>1,N,ls=St[top--];
Solve(l,mid,tmp[ls],t);
int rs=St[top--];
Solve(mid+1,r,tmp[rs],t);
for(N=1;N<=r-l+1;N<<=1);
NTT(tmp[ls],N,1);NTT(tmp[rs],N,1);
for(int i=0;i<N;++i)P[i]=1ll*tmp[ls][i]*tmp[rs][i]%MOD;
NTT(P,N,-1);
St[++top]=ls;St[++top]=rs;
for(int i=0;i<N;++i)tmp[ls][i]=tmp[rs][i]=0;
}
namespace Poly
{
int A[MAX],B[MAX];
void Inv(int *a,int *b,int len)
{
if(len==1){b[0]=fpow(a[0],MOD-2);return;}
Inv(a,b,len>>1);
for(int i=0;i<len;++i)A[i]=a[i],B[i]=b[i];
NTT(A,len<<1,1);NTT(B,len<<1,1);
for(int i=0;i<len<<1;++i)A[i]=1ll*A[i]*B[i]%MOD*B[i]%MOD;
NTT(A,len<<1,-1);
for(int i=0;i<len;++i)b[i]=(b[i]+b[i])%MOD;
for(int i=0;i<len;++i)b[i]=(b[i]+MOD-A[i])%MOD;
for(int i=0;i<len<<1;++i)A[i]=B[i]=0;
}
void Dao(int *a,int *b,int len)
{
for(int i=1;i<len;++i)b[i-1]=1ll*a[i]*i%MOD;
b[len]=b[len-1]=0;
}
void Jifen(int *a,int *b,int len)
{
for(int i=1;i<len;++i)b[i]=1ll*a[i-1]*inv[i]%MOD;
b[0]=0;
}
int C[MAX],D[MAX];
void ln(int *a,int *b,int len)
{
memset(C,0,sizeof(C));memset(D,0,sizeof(D));
Dao(a,C,len);Inv(a,D,len);
NTT(C,len<<1,1);NTT(D,len<<1,1);
for(int i=0;i<len<<1;++i)C[i]=1ll*C[i]*D[i]%MOD;
NTT(C,len<<1,-1);Jifen(C,b,len);
}
int E[MAX],G[MAX];
void Exp(int *a,int *b,int len)
{
if(len==1){b[0]=1;return;}
Exp(a,b,len>>1);ln(b,E,len);
for(int i=0;i<len;++i)E[i]=(MOD-E[i]+a[i])%MOD;E[0]=(E[0]+1)%MOD;
for(int i=0;i<len;++i)G[i]=b[i];
NTT(E,len<<1,1);NTT(G,len<<1,1);
for(int i=0;i<len<<1;++i)E[i]=1ll*E[i]*G[i]%MOD;
NTT(E,len<<1,-1);
for(int i=0;i<len;++i)b[i]=E[i];
for(int i=0;i<len<<1;++i)E[i]=G[i]=0;
}
}
int A[MAX],B[MAX],K;
int SA[MAX],SB[MAX];
int main()
{
n=read();m=read();
for(int i=1;i<=n;++i)A[i]=read();
for(int i=1;i<=m;++i)B[i]=read();
K=read();
inv[0]=inv[1]=1;
int len;for(len=1;len<=max(n,m)+K;len<<=1);
for(int i=2;i<(len<<1);++i)inv[i]=1ll*inv[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=0;i<50;++i)St[++top]=i;Solve(1,n,S1,A);Poly::ln(S1,SA,len);top=0;
for(int i=0;i<50;++i)St[++top]=i;Solve(1,m,S2,B);Poly::ln(S2,SB,len);top=0;
for(int i=0;i<len;++i)SA[i]=1ll*SA[i]*i%MOD;
for(int i=0;i<len;i+=2)SA[i]=(MOD-SA[i])%MOD;
for(int i=0;i<len;++i)SB[i]=1ll*SB[i]*i%MOD;
for(int i=0;i<len;i+=2)SB[i]=(MOD-SB[i])%MOD;
SA[0]=n;SB[0]=m;jc[0]=jcinv[0]=1;
for(int i=1;i<len;++i)jc[i]=1ll*i*jc[i-1]%MOD;
for(int i=1;i<len;++i)jcinv[i]=1ll*jcinv[i-1]*inv[i]%MOD;
memset(A,0,sizeof(A));memset(B,0,sizeof(B));
for(int i=0;i<=K;++i)A[i]=1ll*SA[i]*jcinv[i]%MOD;
for(int i=0;i<=K;++i)B[i]=1ll*SB[i]*jcinv[i]%MOD;
for(len=1;len<=K+K;len<<=1);
NTT(A,len,1);NTT(B,len,1);
for(int i=0;i<len;++i)A[i]=1ll*A[i]*B[i]%MOD;
NTT(A,len,-1);
for(int i=1,inv=fpow(1ll*n*m%MOD,MOD-2);i<=K;++i)
{
int ans=1ll*A[i]*jc[i]%MOD*inv%MOD;
printf("%d\n",ans);
}
return 0;
}
【洛谷5月月赛】玩游戏(NTT,生成函数)的更多相关文章
- 洛谷4月月赛R2
洛谷4月月赛R2 打酱油... A.koishi的数学题 线性筛约数和就可以\(O(N)\)了... #include <iostream> #include <cstdio> ...
- 洛谷3月月赛 R1 Step! ZERO to ONE
洛谷3月月赛 R1 Step! ZERO to ONE 普及组难度 290.25/310滚粗 t1 10分的日语翻译题....太难了不会... t2 真·普及组.略 注意长为1的情况 #include ...
- 【LGR-054】洛谷10月月赛II
[LGR-054]洛谷10月月赛II luogu 成功咕掉Codeforces Round #517的后果就是,我\(\mbox{T4}\)依旧没有写出来.\(\mbox{GG}\) . 浏览器 \( ...
- 【LGR-051】洛谷9月月赛
[LGR-051]洛谷9月月赛 luogu 签到题 description 给出\(K\)和质数\(m\),求最小的\(N\)使得\(111....1\)(\(N\)个\(1\))\(\equiv k ...
- 「LGR-049」洛谷7月月赛 D.Beautiful Pair
「LGR-049」洛谷7月月赛 D.Beautiful Pair 题目大意 : 给出长度为 \(n\) 的序列,求满足 \(i \leq j\) 且 $a_i \times a_j \leq \max ...
- 洛谷9月月赛round2
洛谷9月月赛2 t1 题意:懒得说了 分析:模拟 代码: program flag; var a:..,..]of char; n,i,m,j,x,y,ans,k:longint; begin ass ...
- 「P4996」「洛谷11月月赛」 咕咕咕(数论
题目描述 小 F 是一个能鸽善鹉的同学,他经常把事情拖到最后一天才去做,导致他的某些日子总是非常匆忙. 比如,时间回溯到了 2018 年 11 月 3 日.小 F 望着自己的任务清单: 看 iG 夺冠 ...
- 「P4994」「洛谷11月月赛」 终于结束的起点(枚举
题目背景 终于结束的起点终于写下句点终于我们告别终于我们又回到原点…… 一个个 OIer 的竞赛生涯总是从一场 NOIp 开始,大多也在一场 NOIp 中结束,好似一次次轮回在不断上演.如果这次 NO ...
- 「LuoguP4995」「洛谷11月月赛」 跳跳!(贪心
题目描述 你是一只小跳蛙,你特别擅长在各种地方跳来跳去. 这一天,你和朋友小 F 一起出去玩耍的时候,遇到了一堆高矮不同的石头,其中第 ii 块的石头高度为 h_ihi,地面的高度是 h_0 = 0 ...
随机推荐
- Java HTML to PDF 支持SVG
尝试一 (现用框架的基础上改动,影响最小化) 最早使用的框架 Xhtmlrenderer,需要把HTML转换成XHTML,引入第二个框架Tidy,Tidy与2010年停止更新,github上的项目也停 ...
- .Net架构篇:思考如何设计一款实用的分布式监控系统?
前言 无论从最早期的unix操作系统,还是曾经大行其道的单体式应用,还是现在日益流行的微服务架构,始终都离不开监控的身影.如windows的任务管理器,linux的top命令,都可以看作是监控的面板. ...
- webpack教程(五)——图片的加载
首先安装的依赖 npm install file-loader --save-devnpm install image-webpack-loader --save-devnpm install url ...
- mysql操作命令梳理(4)-中文乱码问题
在平时的mysql运维操作中,经常会碰到插入中文字段后出现乱码的情况,产生中文乱码的原因一般有:1)mysql的编码格式不对,是latin1编码.强烈推荐将mysql下的编码格式都改为utf8,因为它 ...
- 团队作业:SRS文档-飞机大战
本实验为团队合作项目作业的一部分:SRS文档-飞机大战 项目分工:SRS文档项目为梁JM负责完成 实验要求: 3.SRS文档(第二周,截止5月31日) 要求对所选项目进行用例 ...
- 什么是Consul
什么是Consul Consul文档简要整理 什么是Consul? Consul是一个用来实现分布式系统的服务发现与配置的开源工具.他主要由多个组成部分: 服务发现:客户端通过Consul提供服务,类 ...
- log4php的使用方法与详细配置
log4php的使用 首先引入logger.php文件.log4php可以通过引入logger.php来完成自动加载的过程.文件位置如下: 日志记录器自身没有定义日志的输出目的地和格式,所以我们通常需 ...
- Selenium的自我总结1
搞了一段时间的Selenium Web的自动化,针对项目要搭建了一套适合项目的测试框架(Selenium[POM/DataDriver]+TestNG+Ant+Jenkins).在最开始看Seleni ...
- Entity Framwork学习笔记
一.First Demo
- mysql数据库优化大全
转载:https://blog.csdn.net/weixin_38112233/article/details/79054661 数据库优化 sql语句优化 索引优化 加缓存 读写分离 分区 分布式 ...