sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程)

https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share

 

 

# -*- coding: utf-8 -*-
'''
python入门/爬虫/人工智能/机器学习/自然语言/数据统计分析视频教程网址
https://pythoner.taobao.com/ https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/12_Multivariate/multipleRegression
Multiple Regression
- Shows how to calculate the best fit to a plane in 3D, and how to find the
corresponding statistical parameters.
- Demonstrates how to make a 3d plot.
- Example of multiscatterplot, for visualizing correlations in three- to
six-dimensional datasets.
'''
# Import standard packages
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns # additional packages
import sys
import os
sys.path.append(os.path.join('..', '..', 'Utilities')) try:
# Import formatting commands if directory "Utilities" is available
from ISP_mystyle import showData except ImportError:
# Ensure correct performance otherwise
def showData(*options):
plt.show()
return # additional packages ...
# ... for the 3d plot ...
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm # ... and for the statistic
from statsmodels.formula.api import ols def generateData():
''' Generate and show the data: a plane in 3D '''
#随机产生101个数据,取值范围从(-5到5)
x = np.linspace(-5,5,101)
(X,Y) = np.meshgrid(x,x)
# To get reproducable values, I provide a seed value
np.random.seed(987654321)
#np.random.randn产生随机的正太分布数,np.shape(X)表示X的size(101,101)
#np.random.randn(np.shape(X)[0], np.shape(X)[1])表示产生(101,101)个随机数
Z = -5 + 3*X-0.5*Y+np.random.randn(np.shape(X)[0], np.shape(X)[1]) # 绘图
#Set the color
myCmap = cm.GnBu_r
# If you want a colormap from seaborn use:
#from matplotlib.colors import ListedColormap
#myCmap = ListedColormap(sns.color_palette("Blues", 20)) # Plot the figure
fig = plt.figure()
ax = fig.gca(projection='3d')
surf = ax.plot_surface(X,Y,Z, cmap=myCmap, rstride=2, cstride=2,
linewidth=0, antialiased=False)
ax.view_init(20,-120)
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
fig.colorbar(surf, shrink=0.6) outFile = '3dSurface.png'
showData(outFile)
#X.flatten()把多维数据展开,弄成一维数据
return (X.flatten(),Y.flatten(),Z.flatten()) def regressionModel(X,Y,Z):
'''Multilinear regression model, calculating fit, P-values, confidence intervals etc.''' # Convert the data into a Pandas DataFrame
df = pd.DataFrame({'x':X, 'y':Y, 'z':Z}) # --- >>> START stats <<< ---
# Fit the model
model = ols("z ~ x + y", df).fit()
# Print the summary
print((model.summary()))
# --- >>> STOP stats <<< ---
return model._results.params # should be array([-4.99754526, 3.00250049, -0.50514907]) #用numpy的线性回归模型,和上面regressionModel函数计算结果一致
def linearModel(X,Y,Z):
'''Just fit the plane, using the tools from numpy''' # --- >>> START stats <<< ---
M = np.vstack((np.ones(len(X)), X, Y)).T
bestfit = np.linalg.lstsq(M,Z)
# --- >>> STOP stats <<< ---
print(('Best fit plane:', bestfit))
return bestfit if __name__ == '__main__':
(X,Y,Z) = generateData()
regressionModel(X,Y,Z)
linearModel(X,Y,Z)

  

 

 

python风控评分卡建模和风控常识(博客主亲自录制视频教程)

how to calculate the best fit to a plane in 3D, and how to find the corresponding statistical parameters的更多相关文章

  1. (转)Markov Chain Monte Carlo

    Nice R Code Punning code better since 2013 RSS Blog Archives Guides Modules About Markov Chain Monte ...

  2. What is an eigenvector of a covariance matrix?

    What is an eigenvector of a covariance matrix? One of the most intuitive explanations of eigenvector ...

  3. kaggle入门项目:Titanic存亡预测(四)模型拟合

    原kaggle比赛地址:https://www.kaggle.com/c/titanic 原kernel地址:A Data Science Framework: To Achieve 99% Accu ...

  4. Course Machine Learning Note

    Machine Learning Note Introduction Introduction What is Machine Learning? Two definitions of Machine ...

  5. [C2P3] Andrew Ng - Machine Learning

    ##Advice for Applying Machine Learning Applying machine learning in practice is not always straightf ...

  6. AI-IBM-cognitive class --Liner Regression

    Liner Regression import matplotlib.pyplot as plt import pandas as pd import pylab as pl import numpy ...

  7. OpenCASCADE PCurve of Topological Face

    OpenCASCADE PCurve of Topological Face eryar@163.com Abstract. OpenCASCADE provides a class BRepBuil ...

  8. The Model Complexity Myth

    The Model Complexity Myth (or, Yes You Can Fit Models With More Parameters Than Data Points) An oft- ...

  9. 中国澳门sinox很多平台CAD制图、PCB电路板、IC我知道了、HDL硬件描述语言叙述、电路仿真和设计软件,元素分析表

    中国澳门sinox很多平台CAD制图.PCB电路板.IC我知道了.HDL硬件描述语言叙述.电路仿真和设计软件,元素分析表,可打开眼世界. 最近的研究sinox执行windows版protel,powe ...

随机推荐

  1. Orcle安装环境及步骤

    Windows7环境下如何成功安装Oracle数据库      随着微软新一代操作系统 Windows7 的正式发行,使用 Windows7  的朋友也越来越多,很多人在 Windows7 环境下安装 ...

  2. PAT 1038 统计同成绩学生

    https://pintia.cn/problem-sets/994805260223102976/problems/994805284092887040 本题要求读入N名学生的成绩,将获得某一给定分 ...

  3. Eclipse布局问题小记

    当Eclipse的Debug,Console(简称工具条)页面被误操作到占据整行时,通过点击工具条的非选项卡部分,然后向代码区域拖动,即可得恢复非单独行模式.

  4. about use Vue of methods

    methods 处理事件 methods 在vue中处理一些逻辑方面的事情.vue事件监听的方式看上去有点违背分离的传统观念.而实际上vue中所有事件的处理方式和表达式都是严格绑定在当前的视图的vie ...

  5. @Autowired的使用:推荐对构造函数进行注释

    在编写代码的时候,使用@Autowired注解是,发现IDE报的一个警告,如下: Spring Team recommends "Always use constructor based d ...

  6. mysql 和php 保留2位小数

    一般交易中保留的数字的小数位数为2位(即最小单位为 1分钱[0.01元]) 数据库设计中预金钱有关或要求精准度要高的用 decimal(n,m) 表示,n表示保留的数字长度,保留的小数位数,如deci ...

  7. Oracle面试题(基础篇)

    1. Oracle跟SQL Server 2005的区别? 宏观上: 1). 最大的区别在于平台,oracle可以运行在不同的平台上,sql server只能运行在windows平台上,由于windo ...

  8. git 快捷键

    实际上就是弄了个别名 $ git config --global alias.st status $ git config --global alias.ci commit $ git config ...

  9. datatime

    /把一个日期字符串如“2007-2-28 10:18:30”转换为Date对象 var   strArray=str.split("   "); var   strDate=str ...

  10. python主成分分析

    #-*- coding: utf-8 -*- #主成分分析 降维 import pandas as pd #参数初始化 inputfile = '../data/principal_component ...