how to calculate the best fit to a plane in 3D, and how to find the corresponding statistical parameters
sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程)
https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share


# -*- coding: utf-8 -*-
'''
python入门/爬虫/人工智能/机器学习/自然语言/数据统计分析视频教程网址
https://pythoner.taobao.com/ https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/12_Multivariate/multipleRegression
Multiple Regression
- Shows how to calculate the best fit to a plane in 3D, and how to find the
corresponding statistical parameters.
- Demonstrates how to make a 3d plot.
- Example of multiscatterplot, for visualizing correlations in three- to
six-dimensional datasets.
'''
# Import standard packages
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns # additional packages
import sys
import os
sys.path.append(os.path.join('..', '..', 'Utilities')) try:
# Import formatting commands if directory "Utilities" is available
from ISP_mystyle import showData except ImportError:
# Ensure correct performance otherwise
def showData(*options):
plt.show()
return # additional packages ...
# ... for the 3d plot ...
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm # ... and for the statistic
from statsmodels.formula.api import ols def generateData():
''' Generate and show the data: a plane in 3D '''
#随机产生101个数据,取值范围从(-5到5)
x = np.linspace(-5,5,101)
(X,Y) = np.meshgrid(x,x)
# To get reproducable values, I provide a seed value
np.random.seed(987654321)
#np.random.randn产生随机的正太分布数,np.shape(X)表示X的size(101,101)
#np.random.randn(np.shape(X)[0], np.shape(X)[1])表示产生(101,101)个随机数
Z = -5 + 3*X-0.5*Y+np.random.randn(np.shape(X)[0], np.shape(X)[1]) # 绘图
#Set the color
myCmap = cm.GnBu_r
# If you want a colormap from seaborn use:
#from matplotlib.colors import ListedColormap
#myCmap = ListedColormap(sns.color_palette("Blues", 20)) # Plot the figure
fig = plt.figure()
ax = fig.gca(projection='3d')
surf = ax.plot_surface(X,Y,Z, cmap=myCmap, rstride=2, cstride=2,
linewidth=0, antialiased=False)
ax.view_init(20,-120)
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
fig.colorbar(surf, shrink=0.6) outFile = '3dSurface.png'
showData(outFile)
#X.flatten()把多维数据展开,弄成一维数据
return (X.flatten(),Y.flatten(),Z.flatten()) def regressionModel(X,Y,Z):
'''Multilinear regression model, calculating fit, P-values, confidence intervals etc.''' # Convert the data into a Pandas DataFrame
df = pd.DataFrame({'x':X, 'y':Y, 'z':Z}) # --- >>> START stats <<< ---
# Fit the model
model = ols("z ~ x + y", df).fit()
# Print the summary
print((model.summary()))
# --- >>> STOP stats <<< ---
return model._results.params # should be array([-4.99754526, 3.00250049, -0.50514907]) #用numpy的线性回归模型,和上面regressionModel函数计算结果一致
def linearModel(X,Y,Z):
'''Just fit the plane, using the tools from numpy''' # --- >>> START stats <<< ---
M = np.vstack((np.ones(len(X)), X, Y)).T
bestfit = np.linalg.lstsq(M,Z)
# --- >>> STOP stats <<< ---
print(('Best fit plane:', bestfit))
return bestfit if __name__ == '__main__':
(X,Y,Z) = generateData()
regressionModel(X,Y,Z)
linearModel(X,Y,Z)
python风控评分卡建模和风控常识(博客主亲自录制视频教程)
how to calculate the best fit to a plane in 3D, and how to find the corresponding statistical parameters的更多相关文章
- (转)Markov Chain Monte Carlo
Nice R Code Punning code better since 2013 RSS Blog Archives Guides Modules About Markov Chain Monte ...
- What is an eigenvector of a covariance matrix?
What is an eigenvector of a covariance matrix? One of the most intuitive explanations of eigenvector ...
- kaggle入门项目:Titanic存亡预测(四)模型拟合
原kaggle比赛地址:https://www.kaggle.com/c/titanic 原kernel地址:A Data Science Framework: To Achieve 99% Accu ...
- Course Machine Learning Note
Machine Learning Note Introduction Introduction What is Machine Learning? Two definitions of Machine ...
- [C2P3] Andrew Ng - Machine Learning
##Advice for Applying Machine Learning Applying machine learning in practice is not always straightf ...
- AI-IBM-cognitive class --Liner Regression
Liner Regression import matplotlib.pyplot as plt import pandas as pd import pylab as pl import numpy ...
- OpenCASCADE PCurve of Topological Face
OpenCASCADE PCurve of Topological Face eryar@163.com Abstract. OpenCASCADE provides a class BRepBuil ...
- The Model Complexity Myth
The Model Complexity Myth (or, Yes You Can Fit Models With More Parameters Than Data Points) An oft- ...
- 中国澳门sinox很多平台CAD制图、PCB电路板、IC我知道了、HDL硬件描述语言叙述、电路仿真和设计软件,元素分析表
中国澳门sinox很多平台CAD制图.PCB电路板.IC我知道了.HDL硬件描述语言叙述.电路仿真和设计软件,元素分析表,可打开眼世界. 最近的研究sinox执行windows版protel,powe ...
随机推荐
- "Linux内核分析"第七周
可执行程序的装载 张文俊+原创作品转载请注明出处+<Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 一.预 ...
- 《Linux内核设计与实现》第一二章笔记
第一章 linux内核简介 每个处理器在任何时间点上的活动必然概括为下列三者: 运行于用户空间,执行用户进程 运行于内核空间,处于进程上下文,代表某个特定的进程执行 运行于内核空间,处于中断上下文,与 ...
- github链接
github链接:https://github.com/bjing123 test1:https://github.com/bjing123/test-/blob/master/test1.t ...
- MCMC等采样算法
一.直接采样 直接采样的思想是,通过对均匀分布采样,实现对任意分布的采样.因为均匀分布采样好猜,我们想要的分布采样不好采,那就采取一定的策略通过简单采取求复杂采样. 假设y服从某项分布p(y),其累积 ...
- HttpServletResponse类学习
/*//2) 乱码的解决. //设置服务器输出的编码为UTF-8---在BaseServlet处已经已经进行了设置 response.setCharacterEncoding("UTF-8& ...
- JavaScript的类、对象、原型、继承、引用
以CSS为例,有一种为所有class为"xxxx"的元素添加样式(外联样式),那么所有class为xxx的元素样式就会改变,在css中像下面这么写: <html> &l ...
- PAT 1057 数零壹
https://pintia.cn/problem-sets/994805260223102976/problems/994805270914383872 给定一串长度不超过 105 的字符串, ...
- HDU 2052 Picture
http://acm.hdu.edu.cn/showproblem.php?pid=2052 Problem Description Give you the width and height of ...
- 服务器端发送邮件签名采用Data URI scheme包含图片
要在服务器端基于HTML,拼接邮件内容,原来用户使用outlook采用了邮件签名,签名里含有公司Logo的图片,Outlook的msg文件里是专有的cid:xxxx,这里借用Data URI sche ...
- vue-devtools 的安装和使用
vue-devtools的安装与使用 一.在github上下载压缩包,github下载地址:https://github.com/vuejs/vue-devtools 二.解压到本地的某盘 三.用你的 ...
