how to calculate the best fit to a plane in 3D, and how to find the corresponding statistical parameters
sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程)
https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share


# -*- coding: utf-8 -*-
'''
python入门/爬虫/人工智能/机器学习/自然语言/数据统计分析视频教程网址
https://pythoner.taobao.com/ https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/12_Multivariate/multipleRegression
Multiple Regression
- Shows how to calculate the best fit to a plane in 3D, and how to find the
corresponding statistical parameters.
- Demonstrates how to make a 3d plot.
- Example of multiscatterplot, for visualizing correlations in three- to
six-dimensional datasets.
'''
# Import standard packages
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns # additional packages
import sys
import os
sys.path.append(os.path.join('..', '..', 'Utilities')) try:
# Import formatting commands if directory "Utilities" is available
from ISP_mystyle import showData except ImportError:
# Ensure correct performance otherwise
def showData(*options):
plt.show()
return # additional packages ...
# ... for the 3d plot ...
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm # ... and for the statistic
from statsmodels.formula.api import ols def generateData():
''' Generate and show the data: a plane in 3D '''
#随机产生101个数据,取值范围从(-5到5)
x = np.linspace(-5,5,101)
(X,Y) = np.meshgrid(x,x)
# To get reproducable values, I provide a seed value
np.random.seed(987654321)
#np.random.randn产生随机的正太分布数,np.shape(X)表示X的size(101,101)
#np.random.randn(np.shape(X)[0], np.shape(X)[1])表示产生(101,101)个随机数
Z = -5 + 3*X-0.5*Y+np.random.randn(np.shape(X)[0], np.shape(X)[1]) # 绘图
#Set the color
myCmap = cm.GnBu_r
# If you want a colormap from seaborn use:
#from matplotlib.colors import ListedColormap
#myCmap = ListedColormap(sns.color_palette("Blues", 20)) # Plot the figure
fig = plt.figure()
ax = fig.gca(projection='3d')
surf = ax.plot_surface(X,Y,Z, cmap=myCmap, rstride=2, cstride=2,
linewidth=0, antialiased=False)
ax.view_init(20,-120)
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
fig.colorbar(surf, shrink=0.6) outFile = '3dSurface.png'
showData(outFile)
#X.flatten()把多维数据展开,弄成一维数据
return (X.flatten(),Y.flatten(),Z.flatten()) def regressionModel(X,Y,Z):
'''Multilinear regression model, calculating fit, P-values, confidence intervals etc.''' # Convert the data into a Pandas DataFrame
df = pd.DataFrame({'x':X, 'y':Y, 'z':Z}) # --- >>> START stats <<< ---
# Fit the model
model = ols("z ~ x + y", df).fit()
# Print the summary
print((model.summary()))
# --- >>> STOP stats <<< ---
return model._results.params # should be array([-4.99754526, 3.00250049, -0.50514907]) #用numpy的线性回归模型,和上面regressionModel函数计算结果一致
def linearModel(X,Y,Z):
'''Just fit the plane, using the tools from numpy''' # --- >>> START stats <<< ---
M = np.vstack((np.ones(len(X)), X, Y)).T
bestfit = np.linalg.lstsq(M,Z)
# --- >>> STOP stats <<< ---
print(('Best fit plane:', bestfit))
return bestfit if __name__ == '__main__':
(X,Y,Z) = generateData()
regressionModel(X,Y,Z)
linearModel(X,Y,Z)
python风控评分卡建模和风控常识(博客主亲自录制视频教程)
how to calculate the best fit to a plane in 3D, and how to find the corresponding statistical parameters的更多相关文章
- (转)Markov Chain Monte Carlo
Nice R Code Punning code better since 2013 RSS Blog Archives Guides Modules About Markov Chain Monte ...
- What is an eigenvector of a covariance matrix?
What is an eigenvector of a covariance matrix? One of the most intuitive explanations of eigenvector ...
- kaggle入门项目:Titanic存亡预测(四)模型拟合
原kaggle比赛地址:https://www.kaggle.com/c/titanic 原kernel地址:A Data Science Framework: To Achieve 99% Accu ...
- Course Machine Learning Note
Machine Learning Note Introduction Introduction What is Machine Learning? Two definitions of Machine ...
- [C2P3] Andrew Ng - Machine Learning
##Advice for Applying Machine Learning Applying machine learning in practice is not always straightf ...
- AI-IBM-cognitive class --Liner Regression
Liner Regression import matplotlib.pyplot as plt import pandas as pd import pylab as pl import numpy ...
- OpenCASCADE PCurve of Topological Face
OpenCASCADE PCurve of Topological Face eryar@163.com Abstract. OpenCASCADE provides a class BRepBuil ...
- The Model Complexity Myth
The Model Complexity Myth (or, Yes You Can Fit Models With More Parameters Than Data Points) An oft- ...
- 中国澳门sinox很多平台CAD制图、PCB电路板、IC我知道了、HDL硬件描述语言叙述、电路仿真和设计软件,元素分析表
中国澳门sinox很多平台CAD制图.PCB电路板.IC我知道了.HDL硬件描述语言叙述.电路仿真和设计软件,元素分析表,可打开眼世界. 最近的研究sinox执行windows版protel,powe ...
随机推荐
- JProfiler的使用
1.下载地址:http://www.ej-technologies.com/download/jprofiler/files 2.使用过程 1.点击此图的new Session 2.点击左边appli ...
- MySQL 单表优化
一.表字段优化 1.整数类型尽量使用 TINYINT.SMALLINT.MEDIUM_INT 而不是INT,非负数要加上UNSIGNED 2.VARCHAR的长度分配要合理,不要过大 3.时间字段不超 ...
- Xshell连接到centos提示Could not connect to (port 22): Connection failed
关于XShell连接虚拟机中的centos系统的问题,在连接的时候报错如下: 一开始以为是系统的问题,但是搞了很久,才发现是虚拟机这个软件本身的问题,的确坑啊!所以解决方法也很简单.在编辑菜单那里打开 ...
- HDU 2096 小明A+B
http://acm.hdu.edu.cn/showproblem.php?pid=2096 Problem Description 小明今年3岁了, 现在他已经能够认识100以内的非负整数, 并且能 ...
- 基于Windows Subsystem for Linux (WSL) 【Ubuntu】在WIN10 Home Edition安装Docker
root@Andy-PC:~# uname -a Linux Andy-PC --Microsoft #-Microsoft Fri Apr :: PST x86_64 x86_64 x86_64 G ...
- Java使用HTTPClient4.3开发的公众平台消息模板的推送功能
代码引用,参考文章:http://www.cnblogs.com/feiyun126/p/4778556.html,表示感谢! package com.yuanchuangyun.cyb.manage ...
- React 表单控件onSubmit
<!DOCTYPE html><html><head lang="en"> <meta charset="UTF-8" ...
- SpringBoot(十六)_springboot整合JasperReport6.6.0
现在项目上要求实现套打,结果公司里有个人建议用JaperReport进行实现,就进入这个东西的坑中.好歹经过挣扎现在已经脱离此坑中.现在我也是仅能实现读取数据库数据转成pdf进行展示,包括中文的展示. ...
- loadrunner测试结果三
结果摘要: 场景执行情况: 该部分给出了本次测试场景的名称.结果存放路径 及 场景的持续时间 统计信息摘要 statistic summary 该部分给出了场景执行结束后并发数.总吞吐量.平均每秒吞吐 ...
- 选择 Delphi 2007 ( CodeGear Delphi 2007 for Win32 Version 11.0.2837.9583 ) 的理由
选择 Delphi 2007 ( CodeGear Delphi 2007 for Win32 Version 11.0.2837.9583 ) 的理由 我不喜欢用InstallRite的全自动安装包 ...
