sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程)

https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share

 

 

# -*- coding: utf-8 -*-
'''
python入门/爬虫/人工智能/机器学习/自然语言/数据统计分析视频教程网址
https://pythoner.taobao.com/ https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/12_Multivariate/multipleRegression
Multiple Regression
- Shows how to calculate the best fit to a plane in 3D, and how to find the
corresponding statistical parameters.
- Demonstrates how to make a 3d plot.
- Example of multiscatterplot, for visualizing correlations in three- to
six-dimensional datasets.
'''
# Import standard packages
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns # additional packages
import sys
import os
sys.path.append(os.path.join('..', '..', 'Utilities')) try:
# Import formatting commands if directory "Utilities" is available
from ISP_mystyle import showData except ImportError:
# Ensure correct performance otherwise
def showData(*options):
plt.show()
return # additional packages ...
# ... for the 3d plot ...
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm # ... and for the statistic
from statsmodels.formula.api import ols def generateData():
''' Generate and show the data: a plane in 3D '''
#随机产生101个数据,取值范围从(-5到5)
x = np.linspace(-5,5,101)
(X,Y) = np.meshgrid(x,x)
# To get reproducable values, I provide a seed value
np.random.seed(987654321)
#np.random.randn产生随机的正太分布数,np.shape(X)表示X的size(101,101)
#np.random.randn(np.shape(X)[0], np.shape(X)[1])表示产生(101,101)个随机数
Z = -5 + 3*X-0.5*Y+np.random.randn(np.shape(X)[0], np.shape(X)[1]) # 绘图
#Set the color
myCmap = cm.GnBu_r
# If you want a colormap from seaborn use:
#from matplotlib.colors import ListedColormap
#myCmap = ListedColormap(sns.color_palette("Blues", 20)) # Plot the figure
fig = plt.figure()
ax = fig.gca(projection='3d')
surf = ax.plot_surface(X,Y,Z, cmap=myCmap, rstride=2, cstride=2,
linewidth=0, antialiased=False)
ax.view_init(20,-120)
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
fig.colorbar(surf, shrink=0.6) outFile = '3dSurface.png'
showData(outFile)
#X.flatten()把多维数据展开,弄成一维数据
return (X.flatten(),Y.flatten(),Z.flatten()) def regressionModel(X,Y,Z):
'''Multilinear regression model, calculating fit, P-values, confidence intervals etc.''' # Convert the data into a Pandas DataFrame
df = pd.DataFrame({'x':X, 'y':Y, 'z':Z}) # --- >>> START stats <<< ---
# Fit the model
model = ols("z ~ x + y", df).fit()
# Print the summary
print((model.summary()))
# --- >>> STOP stats <<< ---
return model._results.params # should be array([-4.99754526, 3.00250049, -0.50514907]) #用numpy的线性回归模型,和上面regressionModel函数计算结果一致
def linearModel(X,Y,Z):
'''Just fit the plane, using the tools from numpy''' # --- >>> START stats <<< ---
M = np.vstack((np.ones(len(X)), X, Y)).T
bestfit = np.linalg.lstsq(M,Z)
# --- >>> STOP stats <<< ---
print(('Best fit plane:', bestfit))
return bestfit if __name__ == '__main__':
(X,Y,Z) = generateData()
regressionModel(X,Y,Z)
linearModel(X,Y,Z)

  

 

 

python风控评分卡建模和风控常识(博客主亲自录制视频教程)

how to calculate the best fit to a plane in 3D, and how to find the corresponding statistical parameters的更多相关文章

  1. (转)Markov Chain Monte Carlo

    Nice R Code Punning code better since 2013 RSS Blog Archives Guides Modules About Markov Chain Monte ...

  2. What is an eigenvector of a covariance matrix?

    What is an eigenvector of a covariance matrix? One of the most intuitive explanations of eigenvector ...

  3. kaggle入门项目:Titanic存亡预测(四)模型拟合

    原kaggle比赛地址:https://www.kaggle.com/c/titanic 原kernel地址:A Data Science Framework: To Achieve 99% Accu ...

  4. Course Machine Learning Note

    Machine Learning Note Introduction Introduction What is Machine Learning? Two definitions of Machine ...

  5. [C2P3] Andrew Ng - Machine Learning

    ##Advice for Applying Machine Learning Applying machine learning in practice is not always straightf ...

  6. AI-IBM-cognitive class --Liner Regression

    Liner Regression import matplotlib.pyplot as plt import pandas as pd import pylab as pl import numpy ...

  7. OpenCASCADE PCurve of Topological Face

    OpenCASCADE PCurve of Topological Face eryar@163.com Abstract. OpenCASCADE provides a class BRepBuil ...

  8. The Model Complexity Myth

    The Model Complexity Myth (or, Yes You Can Fit Models With More Parameters Than Data Points) An oft- ...

  9. 中国澳门sinox很多平台CAD制图、PCB电路板、IC我知道了、HDL硬件描述语言叙述、电路仿真和设计软件,元素分析表

    中国澳门sinox很多平台CAD制图.PCB电路板.IC我知道了.HDL硬件描述语言叙述.电路仿真和设计软件,元素分析表,可打开眼世界. 最近的研究sinox执行windows版protel,powe ...

随机推荐

  1. JProfiler的使用

    1.下载地址:http://www.ej-technologies.com/download/jprofiler/files 2.使用过程 1.点击此图的new Session 2.点击左边appli ...

  2. MySQL 单表优化

    一.表字段优化 1.整数类型尽量使用 TINYINT.SMALLINT.MEDIUM_INT 而不是INT,非负数要加上UNSIGNED 2.VARCHAR的长度分配要合理,不要过大 3.时间字段不超 ...

  3. Xshell连接到centos提示Could not connect to (port 22): Connection failed

    关于XShell连接虚拟机中的centos系统的问题,在连接的时候报错如下: 一开始以为是系统的问题,但是搞了很久,才发现是虚拟机这个软件本身的问题,的确坑啊!所以解决方法也很简单.在编辑菜单那里打开 ...

  4. HDU 2096 小明A+B

    http://acm.hdu.edu.cn/showproblem.php?pid=2096 Problem Description 小明今年3岁了, 现在他已经能够认识100以内的非负整数, 并且能 ...

  5. 基于Windows Subsystem for Linux (WSL) 【Ubuntu】在WIN10 Home Edition安装Docker

    root@Andy-PC:~# uname -a Linux Andy-PC --Microsoft #-Microsoft Fri Apr :: PST x86_64 x86_64 x86_64 G ...

  6. Java使用HTTPClient4.3开发的公众平台消息模板的推送功能

    代码引用,参考文章:http://www.cnblogs.com/feiyun126/p/4778556.html,表示感谢! package com.yuanchuangyun.cyb.manage ...

  7. React 表单控件onSubmit

    <!DOCTYPE html><html><head lang="en"> <meta charset="UTF-8" ...

  8. SpringBoot(十六)_springboot整合JasperReport6.6.0

    现在项目上要求实现套打,结果公司里有个人建议用JaperReport进行实现,就进入这个东西的坑中.好歹经过挣扎现在已经脱离此坑中.现在我也是仅能实现读取数据库数据转成pdf进行展示,包括中文的展示. ...

  9. loadrunner测试结果三

    结果摘要: 场景执行情况: 该部分给出了本次测试场景的名称.结果存放路径 及 场景的持续时间 统计信息摘要 statistic summary 该部分给出了场景执行结束后并发数.总吞吐量.平均每秒吞吐 ...

  10. 选择 Delphi 2007 ( CodeGear Delphi 2007 for Win32 Version 11.0.2837.9583 ) 的理由

    选择 Delphi 2007 ( CodeGear Delphi 2007 for Win32 Version 11.0.2837.9583 ) 的理由 我不喜欢用InstallRite的全自动安装包 ...