首先显然地,如果某个格子的权值超过2k,其一定不在答案之中;如果在[k,2k]中,其自身就可以作为答案。那么现在我们只需要考虑所选权值都小于k的情况。

  可以发现一个结论:若存在一个权值都小于k的矩阵其权值和>=k,那么该矩阵一定存在权值和在[k,2k]中的子矩阵。

  找到该子矩阵的过程和证明的过程是一样的:若其权值和已经在[k,2k]内,直接选择该矩阵即可;否则考虑从该矩阵中去掉一行(或一列)。如果矩阵剩下的部分权值和:

  (1)在[0,k)内,对去掉的该行(或列)继续执行该操作

  (2)在[k,2k]内,已找到答案

  (3)在(2k,+∞)内,对剩下的矩阵继续执行该操作

  由于矩阵中每一个权值都小于k,权值和不可能从>2k直接跳到<k,最终一定能找到合法矩阵。

  于是只需要找到一个>=k的矩阵。悬线法即可。即先计算出每个位置向上向左向右最远能拓展到哪,然后根据其上方的点递推计算该悬线向左右拓展的最远位置。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 2010
int n,k,low,high,a[N][N],l[N][N],r[N][N],up[N][N];
int L,R,U,D;
long long s[N][N];
long long sum(int l,int r,int u,int d)
{
return s[d][r]-s[d][l-]-s[u-][r]+s[u-][l-];
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj1127.in","r",stdin);
freopen("bzoj1127.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
k=read(),n=read();
low=k,high=k<<;
for (int i=;i<=n;i++)
for (int j=;j<=n;j++)
{
s[i][j]=s[i-][j]+s[i][j-]-s[i-][j-]+(a[i][j]=read());
if (a[i][j]>=low&&a[i][j]<=high) {cout<<j<<' '<<i<<' '<<j<<' '<<i;return ;}
}
for (int i=;i<=n;i++)
{
for (int j=;j<=n;j++)
if (a[i][j]<low) up[i][j]=up[i-][j]+,l[i][j]=l[i][j-]+;
for (int j=n;j>=;j--)
if (a[i][j]<low) r[i][j]=r[i][j+]+;
for (int j=;j<=n;j++)
if (up[i][j]>) l[i][j]=min(l[i][j],l[i-][j]);
for (int j=n;j>=;j--)
if (up[i][j]>) r[i][j]=min(r[i][j],r[i-][j]);
}
for (int i=;i<=n;i++)
for (int j=;j<=n;j++)
if (a[i][j]<low&&sum(j-l[i][j]+,j+r[i][j]-,i-up[i][j]+,i)>=low)
{
L=j-l[i][j]+,R=j+r[i][j]-,U=i-up[i][j]+,D=i;
break;
}
if (!L) cout<<"NIE";
else
{
while (sum(L,R,U,D)>high)
{
if (D>U)
{
if (sum(L,R,U,D-)<low) U=D;
else D--;
}
else R--;
}
cout<<L<<' '<<U<<' '<<R<<' '<<D;
}
return ;
}

BZOJ1127 POI2008KUP(悬线法)的更多相关文章

  1. 【BZOJ-1127】KUP 悬线法 + 贪心

    1127: [POI2008]KUP Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 317  Solved: 11 ...

  2. 【BZOJ-3039&1057】玉蟾宫&棋盘制作 悬线法

    3039: 玉蟾宫 Time Limit: 2 Sec  Memory Limit: 128 MBSubmit: 753  Solved: 444[Submit][Status][Discuss] D ...

  3. BZOJ_3039_玉蟾宫_(动态规划+悬线法)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=3039 n*m的矩阵由R和F组成,求全是F的子矩阵的大小的三倍. 分析 悬线法: 浅谈用极大化思 ...

  4. BZOJ 1057: [ZJOI2007]棋盘制作( dp + 悬线法 )

    对于第一问, 简单的dp. f(i, j)表示以(i, j)为左上角的最大正方形, f(i, j) = min( f(i + 1, j), f(i, j + 1), f(i + 1, j + 1)) ...

  5. BZOJ 3039: 玉蟾宫( 悬线法 )

    最大子矩阵...悬线法..时间复杂度O(nm) 悬线法就是记录一个H向上延伸的最大长度(悬线), L, R向左向右延伸的最大长度, 然后通过递推来得到. ----------------------- ...

  6. [POJ1964]City Game (悬线法)

    题意 其实就是BZOJ3039 不过没权限号(粗鄙之语) 同时也是洛谷4147 就是求最大子矩阵然后*3 思路 悬线法 有个博客讲的不错https://blog.csdn.net/u012288458 ...

  7. [P1169] 棋盘制作 &悬线法学习笔记

    学习笔记 悬线法 最大子矩阵问题: 在一个给定的矩形中有一些障碍点,找出内部不包含障碍点的,边与整个矩形平行或重合的最大子矩形. 极大子矩型:无法再向外拓展的有效子矩形 最大子矩型:最大的一个有效子矩 ...

  8. P1169 [ZJOI2007]棋盘制作 DP悬线法

    题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8 \times 88×8大小的黑白相间的方阵,对应八八六十四卦,黑白 ...

  9. P4147 玉蟾宫 二维DP 悬线法

    题目背景 有一天,小猫rainbow和freda来到了湘西张家界的天门山玉蟾宫,玉蟾宫宫主蓝兔盛情地款待了它们,并赐予它们一片土地. 题目描述 这片土地被分成N*M个格子,每个格子里写着'R'或者'F ...

随机推荐

  1. Android对接微信支付体验

    在写正文之前我不得不吐槽一下:微信支付所提供的参考文档以及技术支持真心太烂了. 微信的坑: 1.在生成prepay_id向微信服务器传递参数时<body>不支持中文.需要对其进行转码,否则 ...

  2. Mac安装LNMP环境,升级php7

    Mac安装nginx+mysql+php 安装nginx比较麻烦,要安装pcre       ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre ...

  3. vue 动态加载组建

    <component :is="comp1"></component> data () { return { comp1:'', } } require.e ...

  4. php WNMP(Windows+Nginx+Mysql+php)配置笔记

    下载安装 php 修改nginx 文件 参考云盘实例 eclipse php配置服务ip 127.0.0.1:999 以及项目路径(php解析路径)

  5. odoo11 访问web/database/manager管理数据库页面布局混乱问题

    最近在使用odoo11开发自己的模块时,在管理数据库的页面的时候,页面布局混乱,查看http加载页面的时候大量的js css文件没有加载成功,被卡了3天,现在问题找到. 问题是在加入自己的custom ...

  6. HDU 3400

    一道很适合练习三分的题目三分套三分强不强 题意:给你平面上两条平行线段\(AB\)和\(CD\),一个人要从\(A\)走到\(D\),他在线段\(AB\)上的速度为\(P\),在\(CD\)上的速度为 ...

  7. 事务,acid,cap,paxos随笔

    事务ACID四个特性: A:原子性(Atomicity)C:一致性(Consistency)I:隔离性(Isolation)D:持久性(Durability) 原子性:语句要么全执行,要么全不执行,是 ...

  8. 如何用chrome查看post get及返回的数据

    chrome浏览器按下F12打开开发者工具 点击Network,找到过滤器 筛选XHR,Method那一列会显示POST GET:

  9. 代码规范(RL-TOC)用更合理的方式写 JavaScript

    代码可以改变世界 不规范代码可以毁掉世界 只有先学会写规范的代码,才可以走的更远 编程语言之间有很多编程规范都是通用: 命名 不要用语言不明的缩写,不用担心名字过长,名字一定要让别人知道确切的意思; ...

  10. 2-Twenty Fifth Scrum Meeting-20151231

    前言 因为服务器关闭,我们的开发项目也遭遇停滞一个星期.与网站开发负责人员协商之后,29号开放服务器.我们的项目也能够继续下去.比规定的开发时间(截止为2015/12/29)推迟. 事项安排 1.开发 ...