题目

描述

​ 难以描述。。。。。。。慢慢看。。:

https://loj.ac/problem/3054

范围

​ $6 \le n \le 1000 \ , \ 1 \le |x| , |y| \le 10^9 $ , 保证 \(n\) 个点互不相同;

题解

  • 枚举 \(D\) 点,逆时针扫描 \(AD\) ,在 \(D\) 作 \(AD\) 的垂线 \(DH\) ,可以发现鱼身和鱼尾是相互独立的,可以分别求出 \(BD\) 和 \(AD\) 的对数然后相乘。

    • \(BC\) :满足条件的 \(BC\) 的中垂线是 \(AD\) 并且垂足落在\(AD\)上 ,枚举所有线段 ,求出中垂线并\(hash\) 成 \(L\) , 记录中点 \(M\) 的二元组 \((L,M)\) 并排序, 对每次统计只需要二分 $(AB,A) ,(AB,B) $ 即可。
    • \(EF\) :随着 \(AD\) 的旋转做two-pointer,每次加入都用一个 \(hash \ table\) 或者 \(map\) 维护某个长度的个数,可以动态维护\(EF\)的对数。
  • 复杂度:\(O(n^2log \ n)\)

    #include<bits/stdc++.h>
    #define ld double
    #define pb push_back
    #define ll long long
    #define eps 1e-12
    using namespace std;
    const int N=3010;
    const ld pi=acos(-1),pi1=pi/2,pi2=pi*2;
    char gc(){
    static char*p1,*p2,s[1000000];
    if(p1==p2)p2=(p1=s)+fread(s,1,1000000,stdin);
    return(p1==p2)?EOF:*p1++;
    }
    int rd(){
    int x=0,f=1;char c=gc();
    while(c<'0'||c>'9'){if(c=='-')f=-1;c=gc();}
    while(c>='0'&&c<='9'){x=x*10+c-'0',c=gc();}
    return x*f;
    }
    int n,cnt;
    ll ans,now;
    map<ll,int>num;
    struct P{
    ll x,y;ld ang;
    P(ll _x=0,ll _y=0):x(_x),y(_y){ang=atan2(y,x);};
    P operator -(const P&A)const{return P(x-A.x,y-A.y);}
    P operator +(const P&A)const{return P(x+A.x,y+A.y);}
    }p[N],L[N<<1];
    bool operator <(const P&a,const P&b){return a.ang<b.ang;}
    int dcmp(ld x){return fabs(x)<eps?0:x<0?-1:1;}
    ll gcd(ll a,ll b){return !b?a:gcd(b,a%b);}
    ll crs(P a,P b){return a.x*b.y-a.y*b.x;}
    ll len(P a){return a.x*a.x+a.y*a.y;}
    P rot(P a){return P(-a.y,a.x);}
    struct axis{
    ll a,b,c,x,y;
    axis(ll _a=0,ll _b=0,ll _c=0,ll _x=0,ll _y=0):a(_a),b(_b),c(_c),x(_x),y(_y){};
    bool operator <(const axis&A)const{
    if(a!=A.a)return a<A.a;
    if(b!=A.b)return b<A.b;
    if(c!=A.c)return c<A.c;
    if(x!=A.x)return x<A.x;
    return y<A.y;
    }
    bool operator ==(const axis&A)const{
    if(a!=A.a)return false;
    if(b!=A.b)return false;
    if(c!=A.c)return false;
    if(x!=A.x)return false;
    return y==A.y;
    }
    }X[N*N];
    void adj(ll&A,ll&B,ll&C){
    if(A<0||!A&&B<0)A=-A,B=-B,C=-C;
    ll g=gcd(gcd(abs(A),abs(B)),abs(C));
    A/=g,B/=g,C/=g;
    }
    void pre(){
    for(int i=1;i<=n;++i)
    for(int j=i+1;j<=n;++j){
    P v=p[j]-p[i],u=p[i]+p[j];
    ll A=2*v.x,B=2*v.y;
    ll C=v.x*u.x+v.y*u.y;
    adj(A,B,C);
    X[++cnt]=axis(A,B,C,u.x,u.y);
    }
    sort(X+1,X+cnt+1);
    }
    int cal(P a,P v){
    P b=a+v;
    ll A=v.y,B=-v.x;
    ll C=A*a.x+B*a.y;
    adj(A,B,C);
    axis tmpl = axis(A,B,C,a.x*2,a.y*2) , tmpr = axis(A,B,C,b.x*2,b.y*2);
    if(tmpr<tmpl)swap(tmpl,tmpr);
    if(tmpr==tmpl)return 0;
    int re = lower_bound(X+1,X+cnt+1,tmpr) - upper_bound(X+1,X+cnt+1,tmpl) ;
    return re;
    }
    void add(ll x,int y){
    if(~y) now+=num[x],num[x]++;
    else num[x]--,now-=num[x];
    }
    void solve(int a){
    int tot=0;
    for(int i=1;i<=n;++i)if(i!=a)L[++tot]=p[i]-p[a];
    sort(L+1,L+n);
    for(int i=1;i<n;++i)L[i+n-1]=L[i],L[i+n-1].ang+=pi2;
    now=0;num.clear();
    for(int i=1,l=1,r=0;i<n;++i){
    ld tmpl=L[i].ang+pi1,tmpr=tmpl+pi;
    while(r<2*n-2&&dcmp(tmpr-L[r+1].ang)>0)add(len(L[++r]),1);
    while(l<=2*n-2&&dcmp(L[l].ang-tmpl)<=0)add(len(L[l++]),-1);
    ans+=cal(p[a],L[i])*now;
    }
    }
    int main(){
    // freopen("fish.in","r",stdin);
    // freopen("fish.out","w",stdout);
    n=rd();
    for(int i=1,x,y;i<=n;++i){x=rd();y=rd();p[i]=P(x,y);}
    pre();
    for(int i=1;i<=n;++i)
    solve(i);
    cout<<ans*4<<endl;
    return 0;
    }

【loj3054】【hnoi2019】鱼的更多相关文章

  1. HNOI2019 鱼 fish

    本来想写个改题记录的然后想了想改不完所以就分开写了= = https://www.luogu.org/problemnew/show/P5286 显然枚举A,D,然后鱼头和鱼身分开来考虑. 鱼身:先枚 ...

  2. [HNOI2019]鱼

    Luogu5286 \(2019.4.14\),新生第一题,改了\(3\)个小时 题解-租酥雨,和出题人给的正解一模一样 枚举\(AD\),分别考虑鱼身\(BC\)和鱼尾\(EF\) 到\(E\),\ ...

  3. [HNOI2019]鱼(计算几何)

    看到数据范围n<=1000,但感觉用O(n^2)不现实,所以考虑方向应该是O(n^2logn). 一种暴力做法:用vector存到1点相同的2点和到2点相同的1点,然后枚举A,枚举BC,再枚举D ...

  4. luogu P5286 [HNOI2019]鱼

    传送门 这题真的牛皮,还好考场没去刚( 这题口胡起来真的简单 首先枚举D点,然后对其他所有点按极角排序,同时记录到D的距离.然后按照极角序枚举A,那么鱼尾的两个点的极角范围就是A关于D对称的那个向量, ...

  5. 【洛谷5286】[HNOI2019] 鱼(计算几何)

    点此看题面 大致题意: 给你\(n\)个点,让你求鱼形图的数量. 核心思路 首先,考虑到\(n\)这么小,我们可以枚举线段\(AD\),再去找符合条件的\(BC,EF\). 然后,不难发现\(BC\) ...

  6. [LOJ3054] 「HNOI2019」鱼

    [LOJ3054] 「HNOI2019」鱼 链接 链接 题解 首先想 \(O(n^3)\) 的暴力,不难发现枚举 \(A\) 和 \(D\) 后, \((B,C)\) 和 \((E,F)\) 两组点互 ...

  7. HNOI2019 摸鱼记

    感觉准备省选时有点浮躁,没有准备联赛时那样认真, 希望能将这次省选当做一个教训吧QAQ. Day -inf 基本上把要学的东西都学了,至少做到了自己心里有底. Day 0 乒乓球室没开差评,打隔膜不带 ...

  8. HNOI2019梦游记

    \(Day_0\) 十点半开始睡觉,开始了八个小时的不眠之夜,整晚都没睡着,这状态明天肯定挂了 \(Day_1\) 开局一条鱼,计算几何只会\(20\) 还是\(T2\)的\(20\)纯暴力好打,\( ...

  9. AlloyTouch 0.2.0发布--鱼和熊掌兼得

    原文链接:https://github.com/AlloyTeam/AlloyTouch/wiki/AlloyTouch-0.2.0 背景 公司师姐昨日在KM发了篇长文,主要结论RAF+transfo ...

随机推荐

  1. Python基础(中)

    前言 print(" _ooOoo_ ") print(" o8888888o ") print(" 88 . 88 ") print(&q ...

  2. [UWP 自定义控件]了解模板化控件(3):实现HeaderedContentControl

    1. 概述 来看看这段XMAL: <StackPanel Width="300"> <TextBox Header="TextBox" /&g ...

  3. Linq 之 Select 和 where 的用法

    最近开始学习linq.自己也总结一下,方便以后查阅. Select 同 Sql 中的 select 类似,即输出我们要的东东,感觉在 linq 中更加强大. Linq 可以对集合如数组.泛型等操作,这 ...

  4. M1/M2 总结

    时光是一列不会回头的列车. 这一学期这么快就过去了,当时刚开始软件工程的那些日子还历历在目.不知道那些如风般过去的日子带给我了什么.然而我又清楚地认识到自己已经改变了. 刚开始软件工程的时候,我对团队 ...

  5. 使用git命令创建分支到团队项目

    背景 在我们的团队中,我作为管理者,创建了一个叫HelloWorld的项目,大家各自在本地进行开发,将自己的工作贡献到我们的团队项目中.为了便于审核,我希望大家先将自己的贡献先放在属于自己的一个分支上 ...

  6. shell脚本--显示文本内容

    shell脚本显示文本内容及相关的常用命令有cat.more.less.head.tail.nl 首先是cat,cat最常用的就是一次性显示文件的所有内容,如果一个文件的内容很多的话,那么就不是很方便 ...

  7. [linux学习]sysctl 以及 net.ipv4.ip_forward

    1. sysctl 命令显示 当前系统的参数配置信息 显示全部配置信息 sysctl -a 帮助信息主要如下: [root@k8s-master ~]# sysctl -help Usage: sys ...

  8. SQLSERVER安装

    sql server 2008 代理服务提供的凭据无效 sql server 2008 代理服务提供的凭据无效 在Windows Server 2008安装SQL Server 2008出现的问题: ...

  9. SAP入行就业

    就大局势来说, 缺乏人最多的模块有abap 还有就是FICO 和MM. 如果您 英语水平特别高的话,建议您学习FICO HR 或BW. 如果您想追求高薪,那就是FICO无疑了.想快速就业或者有编程基础 ...

  10. String()与toString的区别

    1..toString()可以将所有的的数据都转换为字符串,但是要排除null 和 undefined 代码示例: var a = null.toString()--报错 var b = underf ...