传送门


首先$C_i$是没有意义的,因为可以直接让$d_i \times= C_i$,答案也是一样的

所以我们现在考虑求$(\sum_{i=1}^{K-1} |d_{p,i}-d_{q,i}|) - |d_{p,K} - d_{q,K}|$的最大值

这个绝对值好烦人啊qaq

我们考虑如何消去这个绝对值

先抛开第$K$项,假设我们要计算$\sum_{i=1}^{K-1} |d_{p,i}-d_{q,i}|$的最大值

可以发现$\sum_{i=1}^{K-1} |d_{p,i}-d_{q,i}| = max(\sum_{i=1}^{K-1} (d_{p,i}-d_{q,i}) \times (-1)^{a_i})=max(\sum_{i=1}^{K-1} d_{p,i} \times (-1)^{a_i} + d_{q,i} \times (-1)^{a_i + 1})$

其中$0 \leq a_i \leq 1$且取遍所有情况

那么我们可以设$dp_j$表示$a_i$状压成二进制表示为$j$时的$\sum_{i=1}^{K-1} d_{p,i} \times (-1)^{a_i}$的最大值,$ind_j$表示$dp_j$取到最大值时的$p$值,转移也比较方便了。

最后我们考虑第$K$维的影响,我们不妨按照第$K$维从小到大排序,那么$dp_j$表示$a_i$状压成二进制表示为$j$时的$\sum_{i=1}^{K-1} d_{p,i} \times (-1)^{a_i} + d_{K,i}$的最大值,最后统计答案时再减去当前的$d_K$值就可以了

 #include<bits/stdc++.h>
 //This code is written by Itst
 using namespace std;

 inline int read(){
     ;
     char c = getchar();
     ;
     while(!isdigit(c)){
         if(c == '-')
             f = ;
         c = getchar();
     }
     while(isdigit(c)){
         a = (a << ) + (a << ) + (c ^ ');
         c = getchar();
     }
     return f ? -a : a;
 }

 ;
 ] , dir[] , C[];
 int N , K , ans , ind1 , ind2;
 struct ani{
     ] , ind;
     bool operator <(const ani a)const{
         ] < a.val[K - ];
     }
 }now[MAXN];

 inline int calc(int d , int type){
     ;
      ; i < K -  ; ++i)
         sum += (type & ( << i) ?  : -) * now[d].val[i];
     return sum;
 }

 int main(){
 #ifndef ONLINE_JUDGE
     freopen("in" , "r" , stdin);
     //freopen("out" , "w" , stdout);
 #endif
     N = read();
     K = read();
      ; i < K ; ++i)
         C[i] = read();
      ; i <= N ; ++i){
          ; j < K ; ++j)
             now[i].val[j] = read() * C[j];
         now[i].ind = i;
     }
     sort(now +  , now + N + );
      ; i <  << (K - ) ; ++i){
         dir[i] = now[].ind;
         dp[i] = calc( , i) + now[].val[K - ];
     }
      ; i <= N ; ++i){
          ; j <  << (K - ) ; ++j){
              << (K - )) -  - j;
             ] > ans){
                 ans = t + dp[d] - now[i].val[K - ];
                 ind1 = now[i].ind;
                 ind2 = dir[d];
             }
         }
          ; j <  << (K - ) ; ++j)
             ]){
                 dp[j] = calc(i , j) + now[i].val[K - ];
                 dir[j] = now[i].ind;
             }
     }
     cout << ind1 << ' ' << ind2 << endl << ans;
     ;
 }

Luogu4131 WC2005 友好的生物 状压DP的更多相关文章

  1. BZOJ5068: 友好的生物(状压 贪心)

    题意 题目链接 Sol 又是一道神仙题??.. 把绝对值拆开之后状压前面的符号?.. 下界显然,但是上界为啥是对的呀qwq.. #include<bits/stdc++.h> using ...

  2. 公牛与状压dp

    T1 疾病管理 裸得不能再裸的状压dp 不过数据范围骗人 考试时k==0的点没过 我也很无奈呀qwq #include<iostream> #include<cstdio> # ...

  3. 洛谷U14667 肝活动【比赛】 【状压dp】

    题目描述 Yume 最近在玩一个名为<LoveLive! School idol festival>的音乐游戏.他之所以喜欢上这个游戏,是因为这个游戏对非洲人十分友好,即便你脸黑到抽不出好 ...

  4. 洛谷P3694 邦邦的大合唱站队【状压dp】

    状压dp 应用思想,找准状态,多考虑状态和\(f\)答案数组的维数(这个题主要就是找出来状态如何转移) 题目背景 \(BanG Dream!\)里的所有偶像乐队要一起大合唱,不过在排队上出了一些问题. ...

  5. 状压dp大总结1 [洛谷]

    前言 状态压缩是一种\(dp\)里的暴力,但是非常优秀,状态的转移,方程的转移和定义都是状压\(dp\)的难点,本人在次总结状压dp的几个题型和例题,便于自己以后理解分析状态和定义方式 状态压缩动态规 ...

  6. BZOJ 1087: [SCOI2005]互不侵犯King [状压DP]

    1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3336  Solved: 1936[Submit][ ...

  7. nefu1109 游戏争霸赛(状压dp)

    题目链接:http://acm.nefu.edu.cn/JudgeOnline/problemShow.php?problem_id=1109 //我们校赛的一个题,状压dp,还在的人用1表示,被淘汰 ...

  8. poj3311 TSP经典状压dp(Traveling Saleman Problem)

    题目链接:http://poj.org/problem?id=3311 题意:一个人到一些地方送披萨,要求找到一条路径能够遍历每一个城市后返回出发点,并且路径距离最短.最后输出最短距离即可.注意:每一 ...

  9. [NOIP2016]愤怒的小鸟 D2 T3 状压DP

    [NOIP2016]愤怒的小鸟 D2 T3 Description Kiana最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上进行的. 有一架弹弓位于(0,0)处,每次Kiana可 ...

随机推荐

  1. Maven 环境搭建及使用(win10)

    最近由于公司项目需要,学习了一下Maven 环境的配置.这里把配置步骤和简单的操作做一个汇总. 一.Maven环境的搭建 1.配置java环境(这里不详述过程,可参考:http://www.cnblo ...

  2. recovery log直接输出到串口

    我们在调试recovery升级的时候,我们经常需要查看recovery的log,google的原始逻辑中,recovery的log并非直接输出到串口,我们需要输入命令才能获取,我们有三种方式: 第一种 ...

  3. OneAPM大讲堂 | 基于图像质量分析的摄像头监控系统的实现

    今天咱们要介绍的技术很简单,请看场景: 你在家里安装了几个摄像头想监视你家喵星人的一举一动,然而,就在喵星人准备对你的新包发动攻击的时候,图像突然模糊了.毕竟图像模糊了以后你就没法截图回家和喵当面对质 ...

  4. 性能测试—认识JMeter(三)

    <零成本web性能测试>第二章 JMeter基础知识总结和自己的理解 一.JMeter百度词条概念 Apache JMeter是Apache组织开发的基于Java的压力测试工具.用于对软件 ...

  5. python第十七天---时间模块、random模块

    作完一个作业,开始新的学习: 有由今天的时间有限所有学习了以下两个模块,明天继续! 时间模块.random模块 import time #!usr/bin/env python #-*-coding: ...

  6. 修改css的(屏蔽)overflow: hidden;实现浏览器能把网页全图保存成图片

    摘要: 1.项目需要,需要对网页内容“下载”保存成全图片 2.QQ浏览器等主流浏览器都支持这种下载保存功能 3.项目需要场景:编写好的项目维护文档,放在服务器上.如果是txt不能带图片可视化,如果wo ...

  7. Orcale的NVL、NVL2函数和SQL Server的ISNULL函数

    Orcal 的 nvl函数 NVL(Expr1,Expr2)如果Expr1为NULL,返回Expr2的值,否则返回Expr1的值,Expr1,Expr2都为NULL则返回NULL NVL2(Expr1 ...

  8. deepin安装Oracle jdk8,以及添加add-apt-repository命令支持

    @font-face{ font-family:"Times New Roman"; } @font-face{ font-family:"宋体"; } p.M ...

  9. Beta冲刺(4/5)(麻瓜制造者)

    今日已完成 邓弘立:完成了商品管理(下架)和搜索功能 符天愉:完成了后台管理员界面的登录和其他视图的载入 江郑:昨天来决定跨域执行请求,后台参考一些意见以后,操作起来没有那么容易实现,和队友交流以后本 ...

  10. asp.net core中使用HttpClient实现Post和Get的同步异步方法

     准备工作 1.visual studio 2015 update3开发环境 2.net core 1.0.1 及以上版本  目录 1.HttpGet方法 2.HttpPost方法 3.使用示例 4. ...