Recurrences UVA - 10870 (斐波拉契的一般形式推广)
题意:f(n) = a1f(n−1) + a2f(n−2) + a3f(n−3) + ... + adf(n−d), 计算这个f(n)
最重要的是推出矩阵。
#include<cstdio>
#include<cstring>
#define ll long long
ll mod, d, n;
ll a[];
ll f[];
struct jz
{
ll num[][];
jz(){ memset(num, , sizeof(num)); }
jz operator*(const jz&p)const
{
jz ans;
for (int k = ; k < d; ++k)
for (int i = ; i < d;++i)
for (int j = ; j < d; ++j)
ans.num[i][j] = (ans.num[i][j] + num[i][k] * p.num[k][j] % mod) % mod;
return ans;
}
}p;
jz POW(jz x, ll n)
{
jz ans;
for (int i = ; i < d; ++i)ans.num[i][i] = ;
for (; n;n>>=, x=x*x)
if (n & )ans = ans*x;
return ans;
}
void init()
{
for (int i = ; i < d; ++i)
p.num[][i] = a[i];
for (int i = ; i < d; ++i)
p.num[i][i - ] = ;
}
int main()
{
while (scanf("%lld%lld%lld", &d, &n, &mod) != EOF, d + n + mod)
{
for (int i = ; i < d; ++i)scanf("%lld", &a[i]);
for (int i = ; i < d; ++i)scanf("%lld", &f[i]);
if (n <= d){ printf("%lld\n", f[n - ]); }
else
{
init();
jz ans = POW(p, n - d);
ll kk = ;
for (int i = , j = d - ; i < d; ++i, --j)
{
kk = (kk + ans.num[][i] * f[j] % mod) % mod;
}
printf("%lld\n", kk);
}
}
return ;
}
Recurrences UVA - 10870 (斐波拉契的一般形式推广)的更多相关文章
- python迭代器实现斐波拉契求值
斐波那契数列(Fibonacci sequence),又称黄金分割数列,也称为"兔子数列":F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*).例 ...
- 斐波拉契数列加强版——时间复杂度O(1),空间复杂度O(1)
对于斐波拉契经典问题,我们都非常熟悉,通过递推公式F(n) = F(n - ) + F(n - ),我们可以在线性时间内求出第n项F(n),现在考虑斐波拉契的加强版,我们要求的项数n的范围为int范围 ...
- 剑指offer三: 斐波拉契数列
斐波拉契数列是指这样一个数列: F(1)=1; F(2)=1; F(n)=F(n-1)+F(n); public class Solution { public int Fibonacci(int n ...
- ACM/ICPC 之 数论-斐波拉契●卢卡斯数列(HNNUOJ 11589)
看到这个标题,貌似很高大上的样子= =,其实这个也是大家熟悉的东西,先给大家科普一下斐波拉契数列. 斐波拉契数列 又称黄金分割数列,指的是这样一个数列:0.1.1.2.3.5.8.13.21.34.… ...
- 关于斐波拉契数列(Fibonacci)
斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10 ...
- 剑指offer-第二章算法之斐波拉契数列(青蛙跳台阶)
递归与循环 递归:在一个函数的内部调用这个函数. 本质:把一个问题分解为两个,或者多个小问题(多个小问题相互重叠的部分,会存在重复的计算) 优点:简洁,易于实现. 缺点:时间和空间消耗严重,如果递归调 ...
- 剑指offer-面试题9.斐波拉契数列
题目一:写一个函数,输入n,求斐波拉契数列的第n项. 斐波拉契数列的定义如下: { n=; f(n)={ n=; { f(n-)+f(n-) n>; 斐波拉契问题很明显我们会想到用递归来解决: ...
- 【斐波拉契+数论+同余】【ZOJ3707】Calculate Prime S
题目大意: S[n] 表示 集合{1,2,3,4,5.......n} 不存在连续元素的子集个数 Prime S 表示S[n]与之前的所有S[i]互质; 问 找到大于第K个PrimeS 能整除X 的第 ...
- C语言数据结构----递归的应用(斐波拉契数列、汉诺塔、strlen的递归算法)
本节主要说了递归的设计和算法实现,以及递归的基本例程斐波拉契数列.strlen的递归解法.汉诺塔和全排列递归算法. 一.递归的设计和实现 1.递归从实质上是一种数学的解决问题的思维,是一种分而治之的思 ...
随机推荐
- C# Azure 远程调试
Azure上的配置 1. 登录我们自己的app,开启远程调试 [远程调试]—> 打开 [远程 Visual Studio 版本] –> 2017,看你是什么版本 这里有点需要注意的是,如果 ...
- angularjs学习第六天笔记(指令简介学习)
您好,由于周末有事情,没哟学习angularjs,几天晚上开始继续学习angularjs,坚持加油每一天.谢谢 接着上周五学习了表单验证以后,今天开始学习angularjs中一个非常重要的模块:指令 ...
- angularjs学习第五天笔记(第二篇:表单验证升级篇)
您好,我是一名后端开发工程师,由于工作需要,现在系统的从0开始学习前端js框架之angular,每天把学习的一些心得分享出来,如果有什么说的不对的地方,请多多指正,多多包涵我这个前端菜鸟,欢迎大家的点 ...
- Nuget快捷实践
Nuget快捷实践 简介 本文主要包含三个部分,即创建nuget包.上传nuget包和删除nuget包.旨在引导快速使用nuget打包和使用,并实现对于nuget的简单管理. 本文使用的nuget服务 ...
- Java中的集合迭代器
集合的迭代器 任何集合都有迭代器. 任何集合类,都必须能以某种方式存取元素,否则这个集合容器就没有任何意义. 迭代器,也是一种模式(也叫迭代器模式).在java中它是一个对象,其目的是遍历并选中其中的 ...
- maven配置之:<distributionManagement>snapshot快照库和release发布库
在使用maven过程中,我们在开发阶段经常性的会有很多公共库处于不稳定状态,随时需要修改并发布,可能一天就要发布一次,遇到bug时,甚至一天要发布N次.我们知道,maven的依赖管理是基于版本管理的, ...
- Linux下编译、链接和装载
——<程序员的自我修养>读书笔记 编译过程 在Linux下使用GCC将源码编译成可执行文件的过程可以分解为4个步骤,分别是预处理(Prepressing).编译(Compilation). ...
- BZOJ2705: [SDOI2012]Longge的问题(欧拉函数)
题意 题目链接 Sol 开始用反演推发现不会求\(\mu(k)\)慌的一批 退了两步发现只要求个欧拉函数就行了 \(ans = \sum_{d | n} d \phi(\frac{n}{d})\) 理 ...
- 微信小程序测试二三事
微信小程序虽是微信推出的新形态的产品,但是在测试思路上跟其他的传统测试,大相径庭.既然大相径庭,那我们该如何测试呢. 功能测试功能测试跟传统的web功能测试一样,不是app的功能测试哦.这是因为小程序 ...
- 如何判断一个 APP页面是否是H5页面
1.无网络断开网络,显示404或则错误页面的是H5 2.页面布局a.在手机设置.开发者选项中开启显示布局边界功能:b.进入应用查看布局边界:c.原生应用可以看到各个控件的布局边界,H5只有整个页面的一 ...