题意:f(n) = a1f(n−1) + a2f(n−2) + a3f(n−3) + ... + adf(n−d), 计算这个f(n)

最重要的是推出矩阵。

#include<cstdio>
#include<cstring>
#define ll long long
ll mod, d, n;
ll a[];
ll f[];
struct jz
{
ll num[][];
jz(){ memset(num, , sizeof(num)); }
jz operator*(const jz&p)const
{
jz ans;
for (int k = ; k < d; ++k)
for (int i = ; i < d;++i)
for (int j = ; j < d; ++j)
ans.num[i][j] = (ans.num[i][j] + num[i][k] * p.num[k][j] % mod) % mod;
return ans;
}
}p;
jz POW(jz x, ll n)
{
jz ans;
for (int i = ; i < d; ++i)ans.num[i][i] = ;
for (; n;n>>=, x=x*x)
if (n & )ans = ans*x;
return ans;
}
void init()
{
for (int i = ; i < d; ++i)
p.num[][i] = a[i];
for (int i = ; i < d; ++i)
p.num[i][i - ] = ;
}
int main()
{
while (scanf("%lld%lld%lld", &d, &n, &mod) != EOF, d + n + mod)
{
for (int i = ; i < d; ++i)scanf("%lld", &a[i]);
for (int i = ; i < d; ++i)scanf("%lld", &f[i]);
if (n <= d){ printf("%lld\n", f[n - ]); }
else
{
init();
jz ans = POW(p, n - d);
ll kk = ;
for (int i = , j = d - ; i < d; ++i, --j)
{
kk = (kk + ans.num[][i] * f[j] % mod) % mod;
}
printf("%lld\n", kk);
}
}
return ;
}

Recurrences UVA - 10870 (斐波拉契的一般形式推广)的更多相关文章

  1. python迭代器实现斐波拉契求值

    斐波那契数列(Fibonacci sequence),又称黄金分割数列,也称为"兔子数列":F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*).例 ...

  2. 斐波拉契数列加强版——时间复杂度O(1),空间复杂度O(1)

    对于斐波拉契经典问题,我们都非常熟悉,通过递推公式F(n) = F(n - ) + F(n - ),我们可以在线性时间内求出第n项F(n),现在考虑斐波拉契的加强版,我们要求的项数n的范围为int范围 ...

  3. 剑指offer三: 斐波拉契数列

    斐波拉契数列是指这样一个数列: F(1)=1; F(2)=1; F(n)=F(n-1)+F(n); public class Solution { public int Fibonacci(int n ...

  4. ACM/ICPC 之 数论-斐波拉契●卢卡斯数列(HNNUOJ 11589)

    看到这个标题,貌似很高大上的样子= =,其实这个也是大家熟悉的东西,先给大家科普一下斐波拉契数列. 斐波拉契数列 又称黄金分割数列,指的是这样一个数列:0.1.1.2.3.5.8.13.21.34.… ...

  5. 关于斐波拉契数列(Fibonacci)

    斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10 ...

  6. 剑指offer-第二章算法之斐波拉契数列(青蛙跳台阶)

    递归与循环 递归:在一个函数的内部调用这个函数. 本质:把一个问题分解为两个,或者多个小问题(多个小问题相互重叠的部分,会存在重复的计算) 优点:简洁,易于实现. 缺点:时间和空间消耗严重,如果递归调 ...

  7. 剑指offer-面试题9.斐波拉契数列

    题目一:写一个函数,输入n,求斐波拉契数列的第n项. 斐波拉契数列的定义如下: { n=; f(n)={ n=; { f(n-)+f(n-) n>; 斐波拉契问题很明显我们会想到用递归来解决: ...

  8. 【斐波拉契+数论+同余】【ZOJ3707】Calculate Prime S

    题目大意: S[n] 表示 集合{1,2,3,4,5.......n} 不存在连续元素的子集个数 Prime S 表示S[n]与之前的所有S[i]互质; 问 找到大于第K个PrimeS 能整除X 的第 ...

  9. C语言数据结构----递归的应用(斐波拉契数列、汉诺塔、strlen的递归算法)

    本节主要说了递归的设计和算法实现,以及递归的基本例程斐波拉契数列.strlen的递归解法.汉诺塔和全排列递归算法. 一.递归的设计和实现 1.递归从实质上是一种数学的解决问题的思维,是一种分而治之的思 ...

随机推荐

  1. 深入浅出 JVM ClassLoader

    # 前言 在 JVM 综述里面,我们说,JVM 做了三件事情,Java 程序的内存管理, Java Class 二进制字节流的加载(ClassLoader),Java 程序的执行(执行引擎).我们也说 ...

  2. .net实现支付宝在线支付

    流程参考<实物商品交易服务集成技术文档2.0.pdf>网关地址http://paytest.rupeng.cn/AliPay/PayGate.ashx 网关参数说明:partner:商户编 ...

  3. c# 获取当前绝对路径

    /// <summary> /// 获得当前绝对路径 /// </summary> /// <param name="strPath">指定的路 ...

  4. python基础小结

    1.常用的格式符号 2.input函数 3.在程序中,看到了%这样的操作符,这就是python中的格式化输出 age = 18 name = "xiaohua" print(&qu ...

  5. Nginx拦截指定国家的IP

    Nginx拦截指定国家的IP 一.下载GeoIP数据库 wget http://geolite.maxmind.com/download/geoip/api/c/GeoIP.tar.gz wget h ...

  6. inheritPrototypeChain.js

    // 原型链 // 其基本思路是利用原型让一个引用类型继承另一个引用类型的属性和方法 function Person(){ this.name = "Person"; } Pers ...

  7. 调用get_str_time(时间), 就能把毫秒的时间转换成格式化的 ,转化时间戳的方法

    function get_str_time(time){ var datetime = new Date(); datetime.setTime(time); var year = datetime. ...

  8. Python中元组相关知识

    下面给大家介绍以下元组的相关知识: ·元组可以看成是一个不可更改的list 1.元组的创建 # 创建空元祖 t = () print(type(t)) # 创建只有一个值的元组 # 观察可知元组中如果 ...

  9. 【代码笔记】Web-利用Dreamweaver实现form

    一,打开Dreamweaver---->File---New---->如下图所示.选择HTML,点击OK. 二,会出现如下图所示界面.把光标放到Body处. 三,将上面的栏切换到Desig ...

  10. Python之历史

    一.python简单介绍 python的创始人:吉多·范罗苏姆(Guido van Rossum),于1989年开始编写,到1991年完成了第一个python编译器.它是用C语言实现的,并能够调用C语 ...