机器学习-octave使用
1 == 2 % false
1 ~=2 % true
% 隐藏版本,只显示>> .
PS1('>> ');
% 输出两位小数格式
disp(sprintf('2 decimals: %0.2f',a))
% 转换数字格式
format long
format short
v = 1:0.1:2 % v是一个一行十一列矩阵(1.0 1.1 1.2.............2.0)
v = 1:6 % v是一个一行十一列矩阵(1 2 3 4 5 6)
ones(2,3) zeros(2,3) rand(2,3) % 分别生成全为1,全为0,或随机数组成的两行三列矩阵
eye(3) % 三行三列单位矩阵
A = [1 2;3 4; 5 6]
sz = size(A) % 行数列数
sz =
3 2
size(A,1) % 行数
ans = 3;
size(A,2) % 列数
ans = 255;
ans = 3;E
>> pwd % 当前所处路径
ans = C:\Users\Administrator
>> cd 'C:\Users\Administrator\Desktop'
>> pwd % 修改当前所处路径
ans = C:\Users\Administrator\Desktop
load x % 加载一个文件
who whos %显示当前的变量
clear x % 清除某一个变量
clear % 清除所有变量
save hello.mat I %将I 保存到文件中
>> A = [1 2;3 4;5 6] A =
1 2
3 4
5 6
>> A(3,2) ans = 6
>> A(2,:) ans =
3 4
>> A(:,2) ans =
2
4
6
>> A(:,2) = [8; 9; 7]
A =
1 8
3 9
5 7
>> A = [A, [100; 105; 110]]
A =
1 8 100
3 9 105
5 7 110
>> A(:) %将A中所有元素生成一个列向量
ans =
1
3
5
8
9
7
100
105
110
C = [A B] %A在左,B在右
C = 【A;B] %A在上,B在下
>> A = [1 2;3 4;5 6]
>> B = [11 12;13 14;15 16]
>> A .* B % 对应元素分别相乘
ans =
11 24
39 56
75 96
A .^ 2 % 得到一个A中每一个元素平方的矩阵
1 ./ A % 得到一个A中每一个元素取倒数的矩阵
log(A) exp(A) abs(A) A + 1 ....... % 得到一个A中每一个元素做相应运算的矩阵
>> a = [1 2 3 4]
>> max(a) ans = 4
a < 3
ans = %对每一个元素进行判断
1 1 0 0
>> max(A)
ans =
5 6
A =[1 2; 3 4; 5 6]
magic(3) %产生一个三行三列的矩阵,每一行每一列加起来相等
sum(A,1) %求每一行的和
sum(A,2) %求每一列的和
>> t = [0:0.01:0.98];
>> y1 = sin(2*pi*4*t);
>> plot(t,y1); % 画出关于y1-t的图
>> y2 = cos(2*pi*4*t);
>> plot(t,y2);
>> hold on; %保持y2-t
>> plot(t,y1,'r'); %红色
第二周课程笔记 :
https://www.coursera.org/learn/machine-learning/resources/QQx8l
机器学习-octave使用的更多相关文章
- 吴恩达机器学习-octave笔记
隐藏前缀提示符:PS1('>>') 不显示打印内容:;结尾 字符串:a=’hi’ 屏幕输出:disp(sprint(‘2 decimals:%0.2f’,a)) 生成集合(矩阵):V=1: ...
- 吴恩达《机器学习》课程笔记——第六章:Matlab/Octave教程
上一篇 ※※※※※※※※ [回到目录] ※※※※※※※※ 下一篇 这一章的内容比较简单,主要是MATLAB的一些基础教程,如果之前没有学过matlab建议直接找一本相关书籍,边做边学,matl ...
- 四大机器学习编程语言对比:R、Python、MATLAB、Octave
本文作者是一位机器学习工程师,他比较了四种机器学习编程语言(工具):R.Python.MATLAB 和 OCTAVE.作者列出了这些语言(工具)的优缺点,希望对想开始学习它们的人有用. 图源:Pixa ...
- 从零单排入门机器学习:Octave/matlab的经常使用知识之矩阵和向量
Octave/matlab的经常使用知识之矩阵和向量 之前一段时间在coursera看了Andrew ng的机器学习的课程,感觉还不错.算是入门了.这次打算以该课程的作业为主线,对机器学习基本知识做一 ...
- ML:机器学习中常用的Octave语句
coursera上吴恩达的机器学习课程使用Octave/Matlab实现算法,有必要知道Octave简单的语句.最重要的:在遇到不会的语句,使用'''help '''或者'''doc '''查看官方文 ...
- Andrew NG 机器学习编程作业5 Octave
问题描述:根据水库中蓄水标线(water level) 使用正则化的线性回归模型预 水流量(water flowing out of dam),然后 debug 学习算法 以及 讨论偏差和方差对 该线 ...
- Andrew NG 机器学习编程作业4 Octave
问题描述:利用BP神经网络对识别阿拉伯数字(0-9) 训练数据集(training set)如下:一共有5000个训练实例(training instance),每个训练实例是一个400维特征的列向量 ...
- Andrew NG 机器学习编程作业3 Octave
问题描述:使用逻辑回归(logistic regression)和神经网络(neural networks)识别手写的阿拉伯数字(0-9) 一.逻辑回归实现: 数据加载到octave中,如下图所示: ...
- Andrew NG 机器学习编程作业2 Octave
问题描述:用逻辑回归根据学生的考试成绩来判断该学生是否可以入学 这里的训练数据(training instance)是学生的两次考试成绩,以及TA是否能够入学的决定(y=0表示成绩不合格,不予录取:y ...
随机推荐
- 第三章 Goroutine调度策略(16)
本文是<Go语言调度器源代码情景分析>系列的第16篇,也是第三章<Goroutine调度策略>的第1小节. 在调度器概述一节我们提到过,所谓的goroutine调度,是指程序代 ...
- C++基础之预处理和语句
(1)C++语言源程序中可以使用一些预处理中的编译命令,这些命令在程序被正常编译之前执行,被称为预处理命令,这些命令所实现的功能被称为预处理功能(2)常用的预处理命令有文件包含命令.宏定义命令和条件编 ...
- SAS笔记(1) PDV与数据读入
其实我是不喜欢SAS的.当然,我不喜欢她,并不代表她不好,实际上在某些应用场景下SAS是款很优秀的软件.我的数据分析之路始于R,品尝过R的灵活与简洁(不论是软件安装还是语法)后,再来学习SAS,的确提 ...
- 洛谷P1053 篝火晚会
P1053 篝火晚会 题目描述 佳佳刚进高中,在军训的时候,由于佳佳吃苦耐劳,很快得到了教官的赏识,成为了“小教官”.在军训结束的那天晚上,佳佳被命令组织同学们进行篝火晚会.一共有n个同学,编号从1到 ...
- Multi-catch parameters are not allowed for source level below 1.7 报错处理
有可能是你项目右键build-path里面的这个东西 在项目上右键properties->project Facets->修改右侧的version 保持一致 还有一个就是Window里面 ...
- CF987B High School: Become Human 数学
题意翻译 题目大意 输入一个 xxx ,一个 yyy ,求是 xyx^yxy 大还是 yxy^xyx 大. (1≤x,y≤109)(1≤x,y≤10^9)(1≤x,y≤109) 输入输出格式 输入格式 ...
- Vue 5 -- axios、vuex
一.内容回顾 1.webpack(前端中工作,项目上线之前对整个前端项目优化) - entry:整个项目的程序入口(main.js或index.js): - output:输出的出口: - loade ...
- Django2.0里model外键和一对一的on_delete参数
在django2.0后,定义外键和一对一关系的时候需要加on_delete选项,此参数为了避免两个表里的数据不一致问题,不然会报错: TypeError: __init__() missing 1 r ...
- mysql双主互备
mysql主从同步使得数据可以从一个数据库服务器复制到其他服务器上,在复制数据时,一个服务器充当主服务器(master),其余的服务器充当从服务器(slave),备服务器从主服务器同步数据,完成数据的 ...
- Spring事务管理的xml方式
一个业务的成功: 调用的service是执行成功的,意味着service中调用的所有的dao是执行成功的. 事务应该在Service层统一控制. 如果手动去实现,则需要对dao进行代理,在方法前后进 ...