【BZOJ2839】集合计数

Description

一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数,答案模1000000007。(是质数喔~)

Input

一行两个整数N,K

Output

一行为答案。

Sample Input

3 2

Sample Output

6

HINT

【样例说明】
假设原集合为{A,B,C}
则满足条件的方案为:{AB,ABC},{AC,ABC},{BC,ABC},{AB},{AC},{BC}
【数据说明】
     对于100%的数据,1≤N≤1000000;0≤K≤N;

题解:容斥,考虑选出若干集合使得交集至少为k的方案数,有$f(i)=C _n^i \times (2^{2^{n-i}}-1)$,可以理解为已经选定了i个,剩下$2^{n-i}$个集合,每个可以选或不选,但是不能一个也不选。但是这样做肯定会有重复的,我们思考容斥系数是什么。

当我们计算交集至少为k的时候,每个交集为j的方案都会被计算$C_j^k$次,所以
f(k)的系数是1
f(k+1)的系数是$-C_{k+1}^k$
f(k+2)的系数$-C_{k+2}^k+C_{k+1}^kC_{k+2}^{k+1}=C_{k+2}^k$(小tips:$C_N^MC_M^S=C_N^SC_{N-S}^{N-M}$)

以此类推,f(i)的系数就是$(-1)^{i-k}C_i^k$。

所以答案为$\sum\limits_{i=k}^n(-1)^{i-k}C_i^kC_n^i(2^{2^{n-i}}-1)$

求组合数需要线性筛逆元,方法:$i^{-1}\equiv -\lfloor{p\over i}\rfloor\times(p\%i)^{-1}(\mod p)$

求$(2^{2^i}-1)$可以采用从n到k枚举i的方法,初值tmp=1,然后tmp=tmp*(tmp+2)。

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
typedef long long ll;
const ll mod=1000000007;
ll n,k,ans;
ll ine[1000010],jcc[1000010],jc[1000010];
ll c(ll x,ll y)
{
return jc[x]*jcc[y]%mod*jcc[x-y]%mod;
}
int main()
{
scanf("%lld%lld",&n,&k);
ll i,j,flag,tmp;
ine[1]=jc[1]=jcc[1]=jc[0]=jcc[0]=1;
for(i=2;i<=n;i++)
{
ine[i]=(mod-(mod/i)*ine[mod%i])%mod;
jcc[i]=jcc[i-1]*ine[i]%mod;
jc[i]=jc[i-1]*i%mod;
}
for(i=n,flag=((n-k)&1)?-1:1,tmp=1;i>=k;i--)
{
ans=(ans+mod+flag*c(i,k)*c(n,i)%mod*tmp%mod)%mod;
flag=-flag,tmp=tmp*(tmp+2)%mod;
}
printf("%lld",ans);
return 0;
}

【BZOJ2839】集合计数 组合数+容斥的更多相关文章

  1. bzoj2839 集合计数(容斥)

    2839: 集合计数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 883  Solved: 490[Submit][Status][Discuss] ...

  2. bzoj2839 集合计数(容斥+组合)

    集合计数 内存限制:128 MiB 时间限制:1000 ms 标准输入输出     题目描述 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 ...

  3. BZOJ2839 : 集合计数 (广义容斥定理)

    题目 一个有 \(N\) 个 元素的集合有 \(2^N\) 个不同子集(包含空集), 现在要在这 \(2^N\) 个集合中取出若干集合(至少一个), 使得它们的交集的元素个数为 \(K\) ,求取法的 ...

  4. 【BZOJ2839】集合计数(容斥,动态规划)

    [BZOJ2839]集合计数(容斥,动态规划) 题面 BZOJ 权限题 Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使 ...

  5. BZOJ 2839: 集合计数 广义容斥

    在一个 $N$ 个元素集合中的所有子集中选择若干个,且交集大小为 $k$ 的方案数. 按照之前的套路,令 $f[k]$ 表示钦定交集大小为 $k$,其余随便选的方案数. 令 $g[k]$ 表示交集恰好 ...

  6. bzoj2839: 集合计数 容斥+组合

    2839: 集合计数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 523  Solved: 287[Submit][Status][Discuss] ...

  7. BZOJ2839:集合计数(容斥,组合数学)

    Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数,答案模1000000007. ...

  8. BZOJ2839 集合计数 容斥

    题目描述(权限题qwq) 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 它们的交集的元素个数为K,求取法的方案数,答案模100000000 ...

  9. [BZOJ2839]:集合计数(组合数学+容斥)

    题目传送门 题目描述 .(是质数喔~) 输入格式 一行两个整数N,K. 输出格式 一行为答案. 样例 样例输入: 3 2 样例输出: 样例说明 假设原集合为{A,B,C} 则满足条件的方案为:{AB, ...

随机推荐

  1. SS中的三种样式来源:创作人员、读者和用户代理

    CSS中的样式一共有三种来源:创作人员.读者和用户代理,来源的不同会影响到样式的层叠方式,很多第一次学习CSS的朋友,对这三种来源可能会存在一些困惑,下面我写一下自己的理解,若有错误的地方还请指正. ...

  2. 修改push动画的方向

    CATransition *animation = [CATransition animation]; animation.duration = 0.4; animation.timingFuncti ...

  3. 更改ubuntu主机名称

    vim /etc/hostname 将root更改为admin vim /etc/passwd

  4. Storm- Storm作业提交运行流程

    用户编写Storm Topology 使用client提交Topology给Nimbus Nimbus指派Task给Supervisor Supervisor为Task启动Worker Worker执 ...

  5. php 设置页面导航动态active类样式的添加

    在用php制作项目中,一般都是把页头和页脚分离出来.页头导航在选中状态时会有一些样式,例如active等,当页面在首页时候,导航的首页也应该是active的样式,那么,怎么用php控制这些样式的添加和 ...

  6. Delphi - 数组和结构体

    技术交流,DH讲解. 记得很早之前我就说过,数组和结构体在内存中其实一样的,他们都是连续分布的.例如: ? 1 2 3 4 TMyStruct = record   A,B,C:Integer; en ...

  7. strnpy函数

    函数原型: char * strncpy ( char * destination, const char * source, size_t num ); 功能:从字符串source中复制 num个字 ...

  8. Centos7部署NFS

    server1:192.168.1.189   ###客户端 server2:192.168.1.190    ##服务端 1.首先创建共享目录. mkdir -p /data/share 安装nfs ...

  9. stl_slist.h

    stl_slist.h // Filename: stl_slist.h // Comment By: 凝霜 // E-mail: mdl2009@vip.qq.com // Blog: http:/ ...

  10. PPAS数据库备份与恢复

    PPAS数据库备份不同于普通的Postgresql数据库的备份,因为PPAS数据库是兼容Oracle数据库的,所以会涉及到同义词.包.存储过程等,这个时候用Postgresql社区的备份与恢复工具时, ...