【BZOJ2839】集合计数

Description

一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数,答案模1000000007。(是质数喔~)

Input

一行两个整数N,K

Output

一行为答案。

Sample Input

3 2

Sample Output

6

HINT

【样例说明】
假设原集合为{A,B,C}
则满足条件的方案为:{AB,ABC},{AC,ABC},{BC,ABC},{AB},{AC},{BC}
【数据说明】
     对于100%的数据,1≤N≤1000000;0≤K≤N;

题解:容斥,考虑选出若干集合使得交集至少为k的方案数,有$f(i)=C _n^i \times (2^{2^{n-i}}-1)$,可以理解为已经选定了i个,剩下$2^{n-i}$个集合,每个可以选或不选,但是不能一个也不选。但是这样做肯定会有重复的,我们思考容斥系数是什么。

当我们计算交集至少为k的时候,每个交集为j的方案都会被计算$C_j^k$次,所以
f(k)的系数是1
f(k+1)的系数是$-C_{k+1}^k$
f(k+2)的系数$-C_{k+2}^k+C_{k+1}^kC_{k+2}^{k+1}=C_{k+2}^k$(小tips:$C_N^MC_M^S=C_N^SC_{N-S}^{N-M}$)

以此类推,f(i)的系数就是$(-1)^{i-k}C_i^k$。

所以答案为$\sum\limits_{i=k}^n(-1)^{i-k}C_i^kC_n^i(2^{2^{n-i}}-1)$

求组合数需要线性筛逆元,方法:$i^{-1}\equiv -\lfloor{p\over i}\rfloor\times(p\%i)^{-1}(\mod p)$

求$(2^{2^i}-1)$可以采用从n到k枚举i的方法,初值tmp=1,然后tmp=tmp*(tmp+2)。

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
typedef long long ll;
const ll mod=1000000007;
ll n,k,ans;
ll ine[1000010],jcc[1000010],jc[1000010];
ll c(ll x,ll y)
{
return jc[x]*jcc[y]%mod*jcc[x-y]%mod;
}
int main()
{
scanf("%lld%lld",&n,&k);
ll i,j,flag,tmp;
ine[1]=jc[1]=jcc[1]=jc[0]=jcc[0]=1;
for(i=2;i<=n;i++)
{
ine[i]=(mod-(mod/i)*ine[mod%i])%mod;
jcc[i]=jcc[i-1]*ine[i]%mod;
jc[i]=jc[i-1]*i%mod;
}
for(i=n,flag=((n-k)&1)?-1:1,tmp=1;i>=k;i--)
{
ans=(ans+mod+flag*c(i,k)*c(n,i)%mod*tmp%mod)%mod;
flag=-flag,tmp=tmp*(tmp+2)%mod;
}
printf("%lld",ans);
return 0;
}

【BZOJ2839】集合计数 组合数+容斥的更多相关文章

  1. bzoj2839 集合计数(容斥)

    2839: 集合计数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 883  Solved: 490[Submit][Status][Discuss] ...

  2. bzoj2839 集合计数(容斥+组合)

    集合计数 内存限制:128 MiB 时间限制:1000 ms 标准输入输出     题目描述 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 ...

  3. BZOJ2839 : 集合计数 (广义容斥定理)

    题目 一个有 \(N\) 个 元素的集合有 \(2^N\) 个不同子集(包含空集), 现在要在这 \(2^N\) 个集合中取出若干集合(至少一个), 使得它们的交集的元素个数为 \(K\) ,求取法的 ...

  4. 【BZOJ2839】集合计数(容斥,动态规划)

    [BZOJ2839]集合计数(容斥,动态规划) 题面 BZOJ 权限题 Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使 ...

  5. BZOJ 2839: 集合计数 广义容斥

    在一个 $N$ 个元素集合中的所有子集中选择若干个,且交集大小为 $k$ 的方案数. 按照之前的套路,令 $f[k]$ 表示钦定交集大小为 $k$,其余随便选的方案数. 令 $g[k]$ 表示交集恰好 ...

  6. bzoj2839: 集合计数 容斥+组合

    2839: 集合计数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 523  Solved: 287[Submit][Status][Discuss] ...

  7. BZOJ2839:集合计数(容斥,组合数学)

    Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数,答案模1000000007. ...

  8. BZOJ2839 集合计数 容斥

    题目描述(权限题qwq) 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 它们的交集的元素个数为K,求取法的方案数,答案模100000000 ...

  9. [BZOJ2839]:集合计数(组合数学+容斥)

    题目传送门 题目描述 .(是质数喔~) 输入格式 一行两个整数N,K. 输出格式 一行为答案. 样例 样例输入: 3 2 样例输出: 样例说明 假设原集合为{A,B,C} 则满足条件的方案为:{AB, ...

随机推荐

  1. [转]Mysql命令

    1.连接Mysql 格式: mysql -h主机地址 -u用户名 -p用户密码 1.连接到本机上的MYSQL.首先打开DOS窗口,然后进入目录mysql\bin,再键入命令mysql -u root ...

  2. 【leetcode刷题笔记】3Sum

    Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0? Find all un ...

  3. js 数组的所有操作

    js的数组操作有很多,这里记录了常用的和不常用的数组操作方法. 一.数组的创建 数组的创建有两种方法,一种是通过字面量,另一种是通过Array构造函数. 1.字面量 var num1 = [1,2,3 ...

  4. Luogu-4410 [HNOI2009]无归岛

    裸的仙人掌最大独立子集,结果一个zz的错误让我调了好久... \(-inf\)开始设为\(0x7fffffff\)结果\(A_i\)有负数一加就炸了 #include<cstdio> #i ...

  5. Android Studio 技巧备忘

    1.日志输入匹配 在日志输入框,点击Edit Filter Configuration 输入syso,并匹配规则 这样就过滤出自己想要的日志

  6. Eclipse_debug异常_Source not found

    一.现象 在eclipse中,打了断点之后运行代码,出现debug异常:Source not found,如下图 原因 找不到源码. 解决方案 添加源码即可 1.Edit Source Lookup ...

  7. Android数据传递的五种方法汇总

    Android开发中,在不同模块(如Activity)间经常会有各种各样的数据需要相互传递,我把常用的几种 方法都收集到了一起.它们各有利弊,有各自的应用场景. 我现在把它们集中到一个例子中展示,在例 ...

  8. ACM学习历程—广东工业大学2016校赛决赛-网络赛C wintermelon的魔界寻路之旅(最短路 && 递推)

    题目链接:http://gdutcode.sinaapp.com/problem.php?cid=1031&pid=2 题目由于要找对称的路径,那么狠明显可以把右下角的每一块加到左上角对应的每 ...

  9. Unity中的ShaderToys——将大神们写的shader搬到unity中来吧

    http://lib.csdn.net/article/unity3d/38699 这篇文章翻译自国外的一篇文章(这里是原文链接),正在使用unity的你是否在shader toy上发现很多牛逼哄哄的 ...

  10. Parallel Programming-多消费者,多生产者同时运行并行

    在上一篇文章演示了并行的流水线操作(生产者和消费者并行同时执行),C#是通过BlockingCollection这个线程安全的对象作为Buffer,并且结合Task来实现的.但是上一篇文章有个缺陷,在 ...